CSpace  > 中国科学院计算技术研究所期刊论文
Spatial-temporal modeling for prediction of stylized human motion
Zhong, Chongyang1,2; Hu, Lei1,2; Xia, Shihong1,2
2022-10-28
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号511页码:34-42
摘要Human motion prediction refers to forecasting human motion in the future given a past motion sequence, which has significant applications in human tracking, automatic motion generation, autonomous driving, human-robotics interaction, etc. Previous works usually used RNN-based methods, focusing on modeling the temporal dynamics of human motion, which have made great effort on content motions. However, it is unclear for their performance on stylized motion, which is with more expressive emotions and states of the human motion. Different styles within the same motion type have similar motion patterns but also subtle variances. This makes it difficult to be predicted. The main idea of this paper is to learn the spatial characteristic of stylized motion and combine it with the temporal dynamics to achieve accurate prediction. We adopt a transformer-based style encoder to learn the motion representation in the pose space and then maps it to the latent space modeled by the constant variance Gaussian mixture model; meanwhile, we use the hierarchical multi-scale RNN as a temporal encoder to capture the temporal dynamics of human motion; finally, we feed the spatial and temporal features into the prediction decoder to predict the next frame. Our experiments on the Human 3.6 M and Stylized MotionDatasets demonstrate that our model has comparable prediction performance with the state-of-the-art motion prediction works on Human 3.6 M and outperforms previous works on stylized human motion prediction. (C) 2022 Elsevier B.V. All rights reserved.
关键词stylized motion transformer human motion prediction spatial-temporal modeling constant variance GMM
DOI10.1016/j.neucom.2022.08.075
收录类别SCI
语种英语
资助项目National Key R&D Program Science and Technology Winter Olympics Key Special Project[2020YFF0304701] ; National Natural Science Foundation of China[61173055]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000871948700003
出版者ELSEVIER
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19759
专题中国科学院计算技术研究所期刊论文
通讯作者Xia, Shihong
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhong, Chongyang,Hu, Lei,Xia, Shihong. Spatial-temporal modeling for prediction of stylized human motion[J]. NEUROCOMPUTING,2022,511:34-42.
APA Zhong, Chongyang,Hu, Lei,&Xia, Shihong.(2022).Spatial-temporal modeling for prediction of stylized human motion.NEUROCOMPUTING,511,34-42.
MLA Zhong, Chongyang,et al."Spatial-temporal modeling for prediction of stylized human motion".NEUROCOMPUTING 511(2022):34-42.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhong, Chongyang]的文章
[Hu, Lei]的文章
[Xia, Shihong]的文章
百度学术
百度学术中相似的文章
[Zhong, Chongyang]的文章
[Hu, Lei]的文章
[Xia, Shihong]的文章
必应学术
必应学术中相似的文章
[Zhong, Chongyang]的文章
[Hu, Lei]的文章
[Xia, Shihong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。