CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Interactive Regression and Classification for Dense Object Detector
Zhou, Linmao1,2; Chang, Hong1,2,3; Ma, Bingpeng2; Shan, Shiguang1
2022
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号31页码:3684-3696
摘要In object detection, enhancing feature representation using localization information has been revealed as a crucial procedure to improve detection performance. However, the localization information (i.e., regression feature and regression offset) captured by the regression branch is still not well utilized. In this paper, we propose a simple but effective method called Interactive Regression and Classification (IRC) to better utilize localization information. Specifically, we propose Feature Aggregation Module (FAM) and Localization Attention Module (LAM) to leverage localization information to the classification branch during forward propagation. Furthermore, the classifier also guides the learning of the regression branch during backward propagation, to guarantee that the localization information is beneficial to both regression and classification. Thus, the regression and classification branches are learned in an interactive manner. Our method can be easily integrated into anchor-based and anchor-free object detectors without increasing computation cost. With our method, the performance is significantly improved on many popular dense object detectors, including RetinaNet, FCOS, ATSS, PAA, GFL, GFLV2, OTA, GA-RetinaNet, RepPoints, BorderDet and VFNet. Based on ResNet-101 backbone, IRC achieves 47.2% AP on COCO test-dev, surpassing the previous state-of-the-art PAA (44.8% AP), GFL (45.0% AP) and without sacrificing the efficiency both in training and inference. Moreover, our best model (Res2Net-101-DCN) can achieve a single-model single-scale AP of 51.4%.
关键词Location awareness Detectors Feature extraction Object detection Standards Backpropagation Pipelines Dense object detector localization information interactive
DOI10.1109/TIP.2022.3174391
收录类别SCI
语种英语
资助项目Natural Science Foundation of China (NSFC)[61976203] ; Natural Science Foundation of China (NSFC)[61876171]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000803395500010
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19587
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chang, Hong
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol CAS, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
3.Peng Cheng Lab, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Linmao,Chang, Hong,Ma, Bingpeng,et al. Interactive Regression and Classification for Dense Object Detector[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2022,31:3684-3696.
APA Zhou, Linmao,Chang, Hong,Ma, Bingpeng,&Shan, Shiguang.(2022).Interactive Regression and Classification for Dense Object Detector.IEEE TRANSACTIONS ON IMAGE PROCESSING,31,3684-3696.
MLA Zhou, Linmao,et al."Interactive Regression and Classification for Dense Object Detector".IEEE TRANSACTIONS ON IMAGE PROCESSING 31(2022):3684-3696.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Linmao]的文章
[Chang, Hong]的文章
[Ma, Bingpeng]的文章
百度学术
百度学术中相似的文章
[Zhou, Linmao]的文章
[Chang, Hong]的文章
[Ma, Bingpeng]的文章
必应学术
必应学术中相似的文章
[Zhou, Linmao]的文章
[Chang, Hong]的文章
[Ma, Bingpeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。