CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
An Accurate and Efficient Large-Scale Regression Method Through Best Friend Clustering
Li, Kun1,2; Yuan, Liang1; Zhang, Yunquan1; Chen, Gongwei2,3
2022-11-01
发表期刊IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
ISSN1045-9219
卷号33期号:11页码:3129-3140
摘要As the data size in Machine Learning fields grows exponentially, it is inevitable to accelerate the computation by utilizing the ever-growing large number of available cores provided by high-performance computing hardware. However, existing parallel methods for clustering or regression often suffer from problems of low accuracy, slow convergence, and complex hyperparameter-tuning. Furthermore, the parallel efficiency is usually difficult to improve while striking a balance between preserving model properties and partitioning computing workloads on distributed systems. In this article, we propose a novel and simple data structure capturing the most important information among data samples. It has several advantageous properties supporting a hierarchical clustering strategy that contains well-defined metrics for determining optimal hierarchy, balanced partition for maintaining the clustering property, and efficient parallelization for accelerating computation phases. Then we combine the clustering with regression techniques as a parallel library and utilize a hybrid structure of data and model parallelism to make predictions. Experiments illustrate that our library obtains remarkable performance on convergence, accuracy, and scalability.
关键词Clustering algorithms Training Mathematical models Computational modeling Libraries Kernel Support vector machines Distributed machine learning scalable algorithm large-scale clustering parallel regression
DOI10.1109/TPDS.2021.3134336
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61972376] ; National Natural Science Foundation of China[62072431] ; National Natural Science Foundation of China[62032023] ; Science Foundation of Beijing[L182053]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000800198000038
出版者IEEE COMPUTER SOC
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19583
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yuan, Liang
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci UCAS, Sch Comp Sci & Technol, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Kun,Yuan, Liang,Zhang, Yunquan,et al. An Accurate and Efficient Large-Scale Regression Method Through Best Friend Clustering[J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,2022,33(11):3129-3140.
APA Li, Kun,Yuan, Liang,Zhang, Yunquan,&Chen, Gongwei.(2022).An Accurate and Efficient Large-Scale Regression Method Through Best Friend Clustering.IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,33(11),3129-3140.
MLA Li, Kun,et al."An Accurate and Efficient Large-Scale Regression Method Through Best Friend Clustering".IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 33.11(2022):3129-3140.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Kun]的文章
[Yuan, Liang]的文章
[Zhang, Yunquan]的文章
百度学术
百度学术中相似的文章
[Li, Kun]的文章
[Yuan, Liang]的文章
[Zhang, Yunquan]的文章
必应学术
必应学术中相似的文章
[Li, Kun]的文章
[Yuan, Liang]的文章
[Zhang, Yunquan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。