CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Machine Learning Approach for Optimization of Channel Geometry and Source/Drain Doping Profile of Stacked Nanosheet Transistors
Xu, Haoqing1,2; Gan, Weizhuo1,2; Cao, Lei1,2; Yang, Cheng1,2; Wu, Jiahao3,4; Zhou, Mi5; Qu, Hengze6; Zhang, Shengli6; Yin, Huaxiang1,2; Wu, Zhenhua1,2
2022-05-24
发表期刊IEEE TRANSACTIONS ON ELECTRON DEVICES
ISSN0018-9383
页码7
摘要Complex nonlinear dependence of ultra-scaled transistor performance on its channel geometry and source/drain (S/D) doping profile bring obstacles in the advanced technology path-finding and optimization. A machine learning-based multi-objective optimization (MOO) workflow is proposed to optimize the sub-3-nm node gate-all-around (GAA) three-layer-stacked nanosheet transistors (NSFETs) accounting for the key performance knob of channel geometry and S/D doping profile. The artificial neural network (ANN) is trained to learn the compact current-voltage (I-V) relationship of NSFETs from 3-D technology computer-aided design (TCAD) simulation results. Based on the artificial neural network (ANN) model, MOO between threshold swing, on-off ratio, and on-state current of NSFETs is performed with adaptive weighted sum theory. The proposed workflow efficiently suggests an optimized design window of channel geometry and doping profile of NSFETs. The proposed devices satisfy the 2025 International Roadmap for Devices and Systems (IRDSs) target in terms of electrical characteristics for digital circuits.
关键词Performance evaluation Doping Optimization Geometry Semiconductor process modeling Training Logic gates Machine learning multi-objective optimization (MOO) nanosheet technology computer-aided design (TCAD) simulation
DOI10.1109/TED.2022.3175708
收录类别SCI
语种英语
资助项目International Partnership Program of the Chinese Academy of Sciences[E1YH01X] ; MOST[2021YFA1200502] ; NSFC[91964202]
WOS研究方向Engineering ; Physics
WOS类目Engineering, Electrical & Electronic ; Physics, Applied
WOS记录号WOS:000800781900001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:19[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19579
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Shengli; Wu, Zhenhua
作者单位1.Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China
2.Univ Chinese Acad Sci, Sch Integrated Circuits, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
5.Open Univ Sichuan, Informat Technol Ctr, Chengdu 610072, Peoples R China
6.Nanjing Univ Sci & Technol, Coll Mat Sci & Engn, Nanjing 210094, Peoples R China
推荐引用方式
GB/T 7714
Xu, Haoqing,Gan, Weizhuo,Cao, Lei,et al. A Machine Learning Approach for Optimization of Channel Geometry and Source/Drain Doping Profile of Stacked Nanosheet Transistors[J]. IEEE TRANSACTIONS ON ELECTRON DEVICES,2022:7.
APA Xu, Haoqing.,Gan, Weizhuo.,Cao, Lei.,Yang, Cheng.,Wu, Jiahao.,...&Wu, Zhenhua.(2022).A Machine Learning Approach for Optimization of Channel Geometry and Source/Drain Doping Profile of Stacked Nanosheet Transistors.IEEE TRANSACTIONS ON ELECTRON DEVICES,7.
MLA Xu, Haoqing,et al."A Machine Learning Approach for Optimization of Channel Geometry and Source/Drain Doping Profile of Stacked Nanosheet Transistors".IEEE TRANSACTIONS ON ELECTRON DEVICES (2022):7.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Haoqing]的文章
[Gan, Weizhuo]的文章
[Cao, Lei]的文章
百度学术
百度学术中相似的文章
[Xu, Haoqing]的文章
[Gan, Weizhuo]的文章
[Cao, Lei]的文章
必应学术
必应学术中相似的文章
[Xu, Haoqing]的文章
[Gan, Weizhuo]的文章
[Cao, Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。