Institute of Computing Technology, Chinese Academy IR
A Machine Learning Approach for Optimization of Channel Geometry and Source/Drain Doping Profile of Stacked Nanosheet Transistors | |
Xu, Haoqing1,2; Gan, Weizhuo1,2; Cao, Lei1,2; Yang, Cheng1,2; Wu, Jiahao3,4; Zhou, Mi5; Qu, Hengze6; Zhang, Shengli6; Yin, Huaxiang1,2; Wu, Zhenhua1,2 | |
2022-05-24 | |
发表期刊 | IEEE TRANSACTIONS ON ELECTRON DEVICES |
ISSN | 0018-9383 |
页码 | 7 |
摘要 | Complex nonlinear dependence of ultra-scaled transistor performance on its channel geometry and source/drain (S/D) doping profile bring obstacles in the advanced technology path-finding and optimization. A machine learning-based multi-objective optimization (MOO) workflow is proposed to optimize the sub-3-nm node gate-all-around (GAA) three-layer-stacked nanosheet transistors (NSFETs) accounting for the key performance knob of channel geometry and S/D doping profile. The artificial neural network (ANN) is trained to learn the compact current-voltage (I-V) relationship of NSFETs from 3-D technology computer-aided design (TCAD) simulation results. Based on the artificial neural network (ANN) model, MOO between threshold swing, on-off ratio, and on-state current of NSFETs is performed with adaptive weighted sum theory. The proposed workflow efficiently suggests an optimized design window of channel geometry and doping profile of NSFETs. The proposed devices satisfy the 2025 International Roadmap for Devices and Systems (IRDSs) target in terms of electrical characteristics for digital circuits. |
关键词 | Performance evaluation Doping Optimization Geometry Semiconductor process modeling Training Logic gates Machine learning multi-objective optimization (MOO) nanosheet technology computer-aided design (TCAD) simulation |
DOI | 10.1109/TED.2022.3175708 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | International Partnership Program of the Chinese Academy of Sciences[E1YH01X] ; MOST[2021YFA1200502] ; NSFC[91964202] |
WOS研究方向 | Engineering ; Physics |
WOS类目 | Engineering, Electrical & Electronic ; Physics, Applied |
WOS记录号 | WOS:000800781900001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/19579 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Zhang, Shengli; Wu, Zhenhua |
作者单位 | 1.Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China 2.Univ Chinese Acad Sci, Sch Integrated Circuits, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China 4.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China 5.Open Univ Sichuan, Informat Technol Ctr, Chengdu 610072, Peoples R China 6.Nanjing Univ Sci & Technol, Coll Mat Sci & Engn, Nanjing 210094, Peoples R China |
推荐引用方式 GB/T 7714 | Xu, Haoqing,Gan, Weizhuo,Cao, Lei,et al. A Machine Learning Approach for Optimization of Channel Geometry and Source/Drain Doping Profile of Stacked Nanosheet Transistors[J]. IEEE TRANSACTIONS ON ELECTRON DEVICES,2022:7. |
APA | Xu, Haoqing.,Gan, Weizhuo.,Cao, Lei.,Yang, Cheng.,Wu, Jiahao.,...&Wu, Zhenhua.(2022).A Machine Learning Approach for Optimization of Channel Geometry and Source/Drain Doping Profile of Stacked Nanosheet Transistors.IEEE TRANSACTIONS ON ELECTRON DEVICES,7. |
MLA | Xu, Haoqing,et al."A Machine Learning Approach for Optimization of Channel Geometry and Source/Drain Doping Profile of Stacked Nanosheet Transistors".IEEE TRANSACTIONS ON ELECTRON DEVICES (2022):7. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论