CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Self-Supervised Enhancement for Named Entity Disambiguation via Multimodal Graph Convolution
Zhou, Pengfei1,2,3; Ying, Kaining1; Wang, Zhenhua1; Guo, Dongyan1; Bai, Cong1
2022-05-13
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
页码15
摘要Named entity disambiguation (NED) finds the specific meaning of an entity mention in a particular context and links it to a target entity. With the emergence of multimedia, the modalities of content on the Internet have become more diverse, which poses difficulties for traditional NED, and the vast amounts of information make it impossible to manually label every kind of ambiguous data to train a practical NED model. In response to this situation, we present MMGraph, which uses multimodal graph convolution to aggregate visual and contextual language information for accurate entity disambiguation for short texts, and a self-supervised simple triplet network (SimTri) that can learn useful representations in multimodal unlabeled data to enhance the effectiveness of NED models. We evaluated these approaches on a new dataset, MMFi, which contains multimodal supervised data and large amounts of unlabeled data. Our experiments confirm the state-of-the-art performance of MMGraph on two widely used benchmarks and MMFi. SimTri further improves the performance of NED methods. The dataset and code are available at https://github.com/LanceZPF/NNED_MMGraph.
关键词Task analysis Convolution Semantics Internet Bit error rate Visualization Pipelines Graph convolutional network (GCN) multimodal data named entity disambiguation (NED) self-supervised learning (SSL)
DOI10.1109/TNNLS.2022.3173179
收录类别SCI
语种英语
资助项目Zhejiang Provincial Natural Science Foundation of China[LR21F020002] ; Zhejiang Provincial Natural Science Foundation of China[LY21F020024] ; Zhejiang Provincial Natural Science Foundation of China[LY22F030015] ; Natural Science Foundation of China[U20A20196]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000798360300001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19551
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Bai, Cong
作者单位1.Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310023, Zhejiang, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Pengfei,Ying, Kaining,Wang, Zhenhua,et al. Self-Supervised Enhancement for Named Entity Disambiguation via Multimodal Graph Convolution[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2022:15.
APA Zhou, Pengfei,Ying, Kaining,Wang, Zhenhua,Guo, Dongyan,&Bai, Cong.(2022).Self-Supervised Enhancement for Named Entity Disambiguation via Multimodal Graph Convolution.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,15.
MLA Zhou, Pengfei,et al."Self-Supervised Enhancement for Named Entity Disambiguation via Multimodal Graph Convolution".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2022):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Pengfei]的文章
[Ying, Kaining]的文章
[Wang, Zhenhua]的文章
百度学术
百度学术中相似的文章
[Zhou, Pengfei]的文章
[Ying, Kaining]的文章
[Wang, Zhenhua]的文章
必应学术
必应学术中相似的文章
[Zhou, Pengfei]的文章
[Ying, Kaining]的文章
[Wang, Zhenhua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。