CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Benign and malignant diagnosis of spinal tumors based on deep learning and weighted fusion framework on MRI
Liu, Hong1; Jiao, Menglei1,6; Yuan, Yuan2; Ouyang, Hanqiang3,4,5; Liu, Jianfang2; Li, Yuan2; Wang, Chunjie2; Lang, Ning2; Qian, Yueliang1; Jiang, Liang3,4,5; Yuan, Huishu2; Wang, Xiangdong1
2022-05-10
发表期刊INSIGHTS INTO IMAGING
ISSN1869-4101
卷号13期号:1页码:11
摘要Background The application of deep learning has allowed significant progress in medical imaging. However, few studies have focused on the diagnosis of benign and malignant spinal tumors using medical imaging and age information at the patient level. This study proposes a multi-model weighted fusion framework (WFF) for benign and malignant diagnosis of spinal tumors based on magnetic resonance imaging (MRI) images and age information. Methods The proposed WFF included a tumor detection model, sequence classification model, and age information statistic module based on sagittal MRI sequences obtained from 585 patients with spinal tumors (270 benign, 315 malignant) between January 2006 and December 2019 from the cooperative hospital. The experimental results of the WFF were compared with those of one radiologist (D1) and two spine surgeons (D2 and D3). Results In the case of reference age information, the accuracy (ACC) (0.821) of WFF was higher than three doctors' ACC (D1: 0.686; D2: 0.736; D3: 0.636). Without age information, the ACC (0.800) of the WFF was also higher than that of the three doctors (D1: 0.750; D2: 0.664; D3:0.614). Conclusions The proposed WFF is effective in the diagnosis of benign and malignant spinal tumors with complex histological types on MRI.
关键词Spine tumor Benign Malignant Deep learning MRI
DOI10.1186/s13244-022-01227-2
收录类别SCI
语种英语
资助项目Beijing Natural Science Foundation[Z190020] ; National Natural Science Foundation of China[81871326] ; National Natural Science Foundation of China[81971578] ; Capital's Funds for Health Improvement and Research[2020-440916] ; Clinical Medicine Plus X-Young Scholars Project, Peking University ; Fundamental Research Funds for the Central Universities[PKU2021LCXQ005]
WOS研究方向Radiology, Nuclear Medicine & Medical Imaging
WOS类目Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000793164700001
出版者SPRINGER
引用统计
被引频次:18[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19537
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Hong; Jiang, Liang; Yuan, Huishu; Wang, Xiangdong
作者单位1.Chinese Acad Sci, Beijing Key Lab Mobile Comp & Pervas Device, Inst Comp Technol, 6 Kexueyuan South Rd, Beijing 100190, Peoples R China
2.Peking Univ Third Hosp, Dept Radiol, 49 North Garden Rd, Beijing 100191, Peoples R China
3.Peking Univ Third Hosp, Dept Orthopaed, 49 North Garden Rd, Beijing 100191, Peoples R China
4.Engn Res Ctr Bone & Joint Precis Med, Beijing 100191, Peoples R China
5.Beijing Key Lab Spinal Dis Res, Beijing 100191, Peoples R China
6.Univ Chinese Acad Sci, Beijing 100086, Peoples R China
推荐引用方式
GB/T 7714
Liu, Hong,Jiao, Menglei,Yuan, Yuan,et al. Benign and malignant diagnosis of spinal tumors based on deep learning and weighted fusion framework on MRI[J]. INSIGHTS INTO IMAGING,2022,13(1):11.
APA Liu, Hong.,Jiao, Menglei.,Yuan, Yuan.,Ouyang, Hanqiang.,Liu, Jianfang.,...&Wang, Xiangdong.(2022).Benign and malignant diagnosis of spinal tumors based on deep learning and weighted fusion framework on MRI.INSIGHTS INTO IMAGING,13(1),11.
MLA Liu, Hong,et al."Benign and malignant diagnosis of spinal tumors based on deep learning and weighted fusion framework on MRI".INSIGHTS INTO IMAGING 13.1(2022):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Hong]的文章
[Jiao, Menglei]的文章
[Yuan, Yuan]的文章
百度学术
百度学术中相似的文章
[Liu, Hong]的文章
[Jiao, Menglei]的文章
[Yuan, Yuan]的文章
必应学术
必应学术中相似的文章
[Liu, Hong]的文章
[Jiao, Menglei]的文章
[Yuan, Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。