CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Novel Approach for Predicting Water Demand with Complex Patterns Based on Ensemble Learning
Xu, Zhihao1,2,4; Lv, Zhiqiang1,2,3; Li, Jianbo1,2; Shi, Anshuo1,2
2022-07-29
发表期刊WATER RESOURCES MANAGEMENT
ISSN0920-4741
页码20
摘要Predicting urban water demand is important in rationalizing water allocation and building smart cities. Influenced by multifarious factors, water demand is with high-frequency noise and complex patterns. It is difficult for a single learner to predict the nonlinear water demand time series. Therefore, ensemble learning is introduced in this work to predict water demand. A model (Word-embedded Temporal Feature Network, WE-TFN) for predicting water demand influenced by complex factors is proposed as a base learner. Besides, the seasonal time series model and the Principal Component Analysis and Temporal Convolutional Network (PCA-TCN) are combined with WE-TFN for ensemble learning. Based on the water demand data set provided by the Shenzhen Open Data Innovation Contest (SODIC), WE-TFN is compared with some typical models. The experimental results show that WE-TFN performs well in fitting local extreme values and predicting volatility. The ensemble learning method declines by approximately 68.73% on average on the Root Mean Square Error (RMSE) compared with a single base learner. Overall, WE-TFN and the ensemble learning method outperform baselines and perform well in water demand prediction.
关键词Multifarious factors Time series Base learner Local extreme values Volatility
DOI10.1007/s11269-022-03255-5
收录类别SCI
语种英语
资助项目National Key Research and Development Plan Key Special Projects[2018YFB2100303] ; Shandong Province colleges and universities youth innovation technology plan innovation team project[2020KJN011] ; Shandong Provincial Natural Science Foundation[ZR2020MF060] ; Program for Innovative Postdoctoral Talents in Shandong Province[40618030001] ; National Natural Science Foundation of China[61802216] ; Postdoctoral Science Foundation of China[2018M642613]
WOS研究方向Engineering ; Water Resources
WOS类目Engineering, Civil ; Water Resources
WOS记录号WOS:000832823300001
出版者SPRINGER
引用统计
被引频次:13[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19503
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Jianbo
作者单位1.Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Shandong, Peoples R China
2.Qingdao Univ, Inst Ubiquitous Networks & Urban Comp, Qingdao 266070, Shandong, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
4.Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Shandong, Peoples R China
推荐引用方式
GB/T 7714
Xu, Zhihao,Lv, Zhiqiang,Li, Jianbo,et al. A Novel Approach for Predicting Water Demand with Complex Patterns Based on Ensemble Learning[J]. WATER RESOURCES MANAGEMENT,2022:20.
APA Xu, Zhihao,Lv, Zhiqiang,Li, Jianbo,&Shi, Anshuo.(2022).A Novel Approach for Predicting Water Demand with Complex Patterns Based on Ensemble Learning.WATER RESOURCES MANAGEMENT,20.
MLA Xu, Zhihao,et al."A Novel Approach for Predicting Water Demand with Complex Patterns Based on Ensemble Learning".WATER RESOURCES MANAGEMENT (2022):20.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Zhihao]的文章
[Lv, Zhiqiang]的文章
[Li, Jianbo]的文章
百度学术
百度学术中相似的文章
[Xu, Zhihao]的文章
[Lv, Zhiqiang]的文章
[Li, Jianbo]的文章
必应学术
必应学术中相似的文章
[Xu, Zhihao]的文章
[Lv, Zhiqiang]的文章
[Li, Jianbo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。