CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
VoxSeP: semi-positive voxels assist self-supervised 3D medical segmentation
Yang, Zijie1,2; Xie, Lingxi3; Zhou, Wei3; Huo, Xinyue4; Wei, Longhui3; Lu, Jian5; Tian, Qi3; Tang, Sheng1,2,6
2022-07-23
发表期刊MULTIMEDIA SYSTEMS
ISSN0942-4962
页码16
摘要Medical image segmentation enjoys the advantage of understanding 3D contexts, but 3D networks are prone to over-fitting due to the limited amount of annotated data. This paper investigates self-supervised pre-training, i.e., making use of unlabeled medical data to initialize 3D segmentation networks. We build our system upon contrastive learning, where the dependence on positive and negative samples obstructs it from satisfying performance on medical image datasets with fewer samples. To alleviate this issue, we present a novel proxy task that takes advantage of the property of human body similarity in medical scans, and defines the sub-volumes from the same position of different cases as Semi-Positive samples. Pre-trained on a mixed dataset containing 1254 CT volumes, the proposed approach, VoxSeP, transfers well to 4 downstream datasets with 2 different backbone networks. On both fully supervised and semi-supervised fine-tuning, VoxSeP achieves favorable averaged improvements (2% and 4%), which surpass several state-of-the-art counterparts.
关键词3D medical image segmentation Contrastive learning Self-supervised learning Unsupervised learning
DOI10.1007/s00530-022-00977-9
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61871004] ; Project of Chinese Academy of Sciences[E141020]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:000829128600001
出版者SPRINGER
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19481
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tang, Sheng
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Huawei Cloud, Beijing, Peoples R China
4.Univ Sci & Technol China, Hefei, Peoples R China
5.Peking Univ Third Hosp, Dept Urol, Beijing, Peoples R China
6.Zhejiang Lab, Res Inst Intelligent Comp, Hangzhou, Peoples R China
推荐引用方式
GB/T 7714
Yang, Zijie,Xie, Lingxi,Zhou, Wei,et al. VoxSeP: semi-positive voxels assist self-supervised 3D medical segmentation[J]. MULTIMEDIA SYSTEMS,2022:16.
APA Yang, Zijie.,Xie, Lingxi.,Zhou, Wei.,Huo, Xinyue.,Wei, Longhui.,...&Tang, Sheng.(2022).VoxSeP: semi-positive voxels assist self-supervised 3D medical segmentation.MULTIMEDIA SYSTEMS,16.
MLA Yang, Zijie,et al."VoxSeP: semi-positive voxels assist self-supervised 3D medical segmentation".MULTIMEDIA SYSTEMS (2022):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Zijie]的文章
[Xie, Lingxi]的文章
[Zhou, Wei]的文章
百度学术
百度学术中相似的文章
[Yang, Zijie]的文章
[Xie, Lingxi]的文章
[Zhou, Wei]的文章
必应学术
必应学术中相似的文章
[Yang, Zijie]的文章
[Xie, Lingxi]的文章
[Zhou, Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。