CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
NEAWalk: Inferring missing social interactions via topological-temporal embeddings of social groups
Shen, Yinghan1,3; Jiang, Xuhui1,3; Li, Zijian1,3; Wang, Yuanzhuo1,4; Jin, Xiaolong2,3; Ma, Shengjie5; Cheng, Xueqi2,3
2022-08-23
发表期刊KNOWLEDGE AND INFORMATION SYSTEMS
ISSN0219-1377
页码25
摘要Real-world network data consisting of social interactions can be incomplete due to deliberately erased or unsuccessful data collection, which cause the misleading of social interaction analysis for many various time-aware applications. Naturally, the link prediction task has drawn much research interest to predict the missing edges in the incomplete social network. However, existing studies of link prediction cannot effectively capture the entangling topological and temporal dynamics already residing in the social network, thus cannot effectively reasoning the missing interactions in dynamic networks. In this paper, we propose the NEAWalk, a novel model to infer the missing social interaction based on topological-temporal features of patterns in the social group. NEAWalk samples the query-relevant walks containing both the historical and evolving information by focusing on the temporal constraint and designs a dual-view anonymization procedure for extracting both topological and temporal features from the collected walks to conduct the inference. Two-track experiments on several well-known network datasets demonstrate that the NEAWalk stably achieves superior performance against several state-of-the-art baseline methods.
关键词Dynamic network completion Dynamic graph representation learning Social group Anonymous walk
DOI10.1007/s10115-022-01724-2
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[U1836206] ; National Natural Science Foundation of China[91646120] ; National Natural Science Foundation of China[U21B2046] ; National Natural Science Foundation of China[62172393] ; National Key Research and Development Program of China[2018YTFB1402601] ; Zhongyuanyingcai program[204200510002] ; Major Public Welfare Project of Henan Province[201300311200]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:000843458800002
出版者SPRINGER LONDON LTD
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19457
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Yuanzhuo
作者单位1.Chinese Acad Sci, Data Intelligence Syst Res Ctr, Inst Comp Technol, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Network Data & Sci & Technol, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Zhongke Big Data Acad, Zhengzhou, Peoples R China
5.Renmin Univ China, Gaoling Sch Artificial Intelligence, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Shen, Yinghan,Jiang, Xuhui,Li, Zijian,et al. NEAWalk: Inferring missing social interactions via topological-temporal embeddings of social groups[J]. KNOWLEDGE AND INFORMATION SYSTEMS,2022:25.
APA Shen, Yinghan.,Jiang, Xuhui.,Li, Zijian.,Wang, Yuanzhuo.,Jin, Xiaolong.,...&Cheng, Xueqi.(2022).NEAWalk: Inferring missing social interactions via topological-temporal embeddings of social groups.KNOWLEDGE AND INFORMATION SYSTEMS,25.
MLA Shen, Yinghan,et al."NEAWalk: Inferring missing social interactions via topological-temporal embeddings of social groups".KNOWLEDGE AND INFORMATION SYSTEMS (2022):25.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shen, Yinghan]的文章
[Jiang, Xuhui]的文章
[Li, Zijian]的文章
百度学术
百度学术中相似的文章
[Shen, Yinghan]的文章
[Jiang, Xuhui]的文章
[Li, Zijian]的文章
必应学术
必应学术中相似的文章
[Shen, Yinghan]的文章
[Jiang, Xuhui]的文章
[Li, Zijian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。