Institute of Computing Technology, Chinese Academy IR
AbdomenCT-1K: Is Abdominal Organ Segmentation a Solved Problem? | |
Ma, Jun1; Zhang, Yao2,3; Gu, Song4; Zhu, Cheng5; Ge, Cheng6; Zhang, Yichi7; An, Xingle8; Wang, Congcong9,10; Wang, Qiyuan11; Liu, Xin12; Cao, Shucheng13; Zhang, Qi14; Liu, Shangqing15; Wang, Yunpeng16; Li, Yuhui17; He, Jian18; Yang, Xiaoping19 | |
2022-10-01 | |
发表期刊 | IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE |
ISSN | 0162-8828 |
卷号 | 44期号:10页码:6695-6714 |
摘要 | With the unprecedented developments in deep learning, automatic segmentation of main abdominal organs seems to be a solved problem as state-of-the-art (SOTA) methods have achieved comparable results with inter-rater variability on many benchmark datasets. However, most of the existing abdominal datasets only contain single-center, single-phase, single-vendor, or single-disease cases, and it is unclear whether the excellent performance can generalize on diverse datasets. This paper presents a large and diverse abdominal CT organ segmentation dataset, termed AbdomenCT-1K, with more than 1000 (1K) CT scans from 12 medical centers, including multi-phase, multi-vendor, and multi-disease cases. Furthermore, we conduct a large-scale study for liver, kidney, spleen, and pancreas segmentation and reveal the unsolved segmentation problems of the SOTA methods, such as the limited generalization ability on distinct medical centers, phases, and unseen diseases. To advance the unsolved problems, we further build four organ segmentation benchmarks for fully supervised, semi-supervised, weakly supervised, and continual learning, which are currently challenging and active research topics. Accordingly, we develop a simple and effective method for each benchmark, which can be used as out-of-the-box methods and strong baselines. We believe the AbdomenCT-1K dataset will promote future in-depth research towards clinical applicable abdominal organ segmentation methods. |
关键词 | Benchmark testing Liver Image segmentation Biological systems Pancreas Computed tomography Kidney Multi-organ segmentation generalization semi-supervised learning weakly supervised learning continual learning |
DOI | 10.1109/TPAMI.2021.3100536 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | China's Ministry of Science and Technology[2020YFA0713800] ; National Natural Science Foundation of China[11971229] ; National Natural Science Foundation of China[12090023] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000853875300063 |
出版者 | IEEE COMPUTER SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/19413 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Yang, Xiaoping |
作者单位 | 1.Nanjing Univ Sci & Technol, Dept Math, Nanjing 210094, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Beijing 100864, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 210044, Peoples R China 5.Shenzhen Haichuang Med CO LTD, Shenzhen 518000, Peoples R China 6.Jiangsu Univ Technol, Inst Bioinformat & Med Engn, Changzhou 213001, Peoples R China 7.Beihang Univ, Sch Biol Sci & Med Engn, Beijing 100191, Peoples R China 8.Beijing Infervis Technol CO LTD, Beijing 100089, Peoples R China 9.Tianjin Univ Technol, Sch Comp Sci & Engn, Tianjin 300222, Peoples R China 10.Norwegian Univ Sci & Technol, Dept Comp Sci, N-7491 Trondheim, Norway 11.Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Peoples R China 12.Suzhou LungCare Med Technol Co Ltd, Suzhou 215021, Peoples R China 13.King Abdullah Univ Sci & Technol, Bioengn, Biol & Environm Sci & Engn Div, Thuwal 23955, Saudi Arabia 14.Univ Macau, Fac Sci & Technol, Dept Comp & Informat Sci, Taipa 999078, Macau, Peoples R China 15.Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Peoples R China 16.Fudan Univ, Inst Biomed Sci, Shanghai 200433, Peoples R China 17.Univ Southern Calif, Computat Biol, Los Angeles, CA 90007 USA 18.Nanjing Drum Tower Hosp, Dept Nucl Med, Nanjing 210008, Peoples R China 19.Nanjing Univ, Dept Math, Nanjing 210023, Peoples R China |
推荐引用方式 GB/T 7714 | Ma, Jun,Zhang, Yao,Gu, Song,et al. AbdomenCT-1K: Is Abdominal Organ Segmentation a Solved Problem?[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2022,44(10):6695-6714. |
APA | Ma, Jun.,Zhang, Yao.,Gu, Song.,Zhu, Cheng.,Ge, Cheng.,...&Yang, Xiaoping.(2022).AbdomenCT-1K: Is Abdominal Organ Segmentation a Solved Problem?.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,44(10),6695-6714. |
MLA | Ma, Jun,et al."AbdomenCT-1K: Is Abdominal Organ Segmentation a Solved Problem?".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 44.10(2022):6695-6714. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论