CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Distribution Distance Regularized Sequence Representation for Text Matching in Asymmetrical Domains
Yu, Weijie1; Xu, Chen2; Xu, Jun2; Pang, Liang3; Wen, Ji-Rong2
2022
发表期刊IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING
ISSN2329-9290
卷号30页码:721-733
摘要Projecting the input text pair into a common semantic space where the matching function can be readily learned is an essential step for asymmetrical text matching. In the practice, it is often observed that the feature vectors from asymmetrical texts show a tendency to be gradually undistinguishable in the semantic space as the model is trained. However, the phenomenon is overlooked in existing studies. As a result, the feature vectors are constructed without any regularization, which inevitably hinders the learning of the downstream matching functions. In this paper, we first exploit the phenomenon and propose DDR-Match, a novel matching framework tailored for asymmetrical text matching. Specifically, in DDR-Match, a distribution distance-based regularizer is devised to accelerate the fusion of sequence representations corresponding to different domains in the semantic space. Then, we provide three instances of DDR-Match and make a comparison among them. DDR-Match is compatible with existing text matching methods by incorporating them as the underlying matching model. Four popular text matching methods are exploited in the paper. Extensive experimental results based on five publicly available benchmarks showed that DDR-Match consistently outperformed its underlying methods.
关键词Semantics Neural networks Training Task analysis Measurement Speech processing Electronic mail Text matching sequence representation natural language processing
DOI10.1109/TASLP.2022.3145289
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2019YFE0198200] ; National Natural Science Foundation of China[61872338] ; National Natural Science Foundation of China[61832017] ; National Natural Science Foundation of China[62006234] ; Beijing Outstanding Young Scientist Program[BJJWZYJH012019100020098] ; Intelligent Social Governance Interdisciplinary Platform, Major Innovation & Planning Interdisciplinary Platform for the Double-First Class Initiative, Renmin University of China ; Public Policy and Decision-making Research Lab of Renmin University of China
WOS研究方向Acoustics ; Engineering
WOS类目Acoustics ; Engineering, Electrical & Electronic
WOS记录号WOS:000753551800007
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18995
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xu, Jun
作者单位1.Renmin Univ China, Sch Informat, Beijing 100872, Peoples R China
2.Renmin Univ China, Gaoling Sch Artificial Intelligence, Beijing Key Lab Big Data Management & Anal Method, Beijing 100872, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Yu, Weijie,Xu, Chen,Xu, Jun,et al. Distribution Distance Regularized Sequence Representation for Text Matching in Asymmetrical Domains[J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING,2022,30:721-733.
APA Yu, Weijie,Xu, Chen,Xu, Jun,Pang, Liang,&Wen, Ji-Rong.(2022).Distribution Distance Regularized Sequence Representation for Text Matching in Asymmetrical Domains.IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING,30,721-733.
MLA Yu, Weijie,et al."Distribution Distance Regularized Sequence Representation for Text Matching in Asymmetrical Domains".IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 30(2022):721-733.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Weijie]的文章
[Xu, Chen]的文章
[Xu, Jun]的文章
百度学术
百度学术中相似的文章
[Yu, Weijie]的文章
[Xu, Chen]的文章
[Xu, Jun]的文章
必应学术
必应学术中相似的文章
[Yu, Weijie]的文章
[Xu, Chen]的文章
[Xu, Jun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。