CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Hierarchical Spatial-Temporal Embedding Method Based on Enhanced Trajectory Features for Ship Type Classification
Sun, Tao1,2; Xu, Yongjun1; Zhang, Zhao1; Wu, Lin1; Wang, Fei1
2022-02-01
发表期刊SENSORS
卷号22期号:3页码:16
摘要Ship type classification is an essential task in maritime navigation domains, contributing to shipping monitoring, analysis, and forecasting. Presently, with the development of ship positioning and monitoring systems, many ship trajectory acquisitions make it possible to classify ships according to their movement pattern. Existing methods of ship classification based on trajectory include classical sequence analysis and deep learning methods. However, the real ship trajectories are unevenly distributed in geographical space, which leads to many problems in inferring the ship movement mode on the original ship trajectory. This paper proposes a hierarchical spatial-temporal embedding method based on enhanced trajectory features for ship type classification. We first preprocess the trajectory and combine the port information to transform the original ship trajectory into the moored records of ships, removing the unevenly distributed points in the trajectory data and enhancing key points' semantic information. Then, we propose a Hierarchical Spatial-Temporal Embedding Method (Hi-STEM) for ship classification. Hi-STEM maps moored records in the original geographical space into the feature space and can efficiently find the classification plane in the feature space. Experiments are conducted on real-world datasets and compared with several existing methods. The result shows that our approach has high accuracy in ship classification on ship moored records. We make the source code and datasets publicly available.
关键词ship classification spatial-temporal embedding feature enhancement deep learning attention
DOI10.3390/s22030711
收录类别SCI
语种英语
资助项目NSFC[61902376] ; National Key Research and Development Program of China[2018YFC1407400]
WOS研究方向Chemistry ; Engineering ; Instruments & Instrumentation
WOS类目Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号WOS:000754840800001
出版者MDPI
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18967
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Fei
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100039, Peoples R China
推荐引用方式
GB/T 7714
Sun, Tao,Xu, Yongjun,Zhang, Zhao,et al. A Hierarchical Spatial-Temporal Embedding Method Based on Enhanced Trajectory Features for Ship Type Classification[J]. SENSORS,2022,22(3):16.
APA Sun, Tao,Xu, Yongjun,Zhang, Zhao,Wu, Lin,&Wang, Fei.(2022).A Hierarchical Spatial-Temporal Embedding Method Based on Enhanced Trajectory Features for Ship Type Classification.SENSORS,22(3),16.
MLA Sun, Tao,et al."A Hierarchical Spatial-Temporal Embedding Method Based on Enhanced Trajectory Features for Ship Type Classification".SENSORS 22.3(2022):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Tao]的文章
[Xu, Yongjun]的文章
[Zhang, Zhao]的文章
百度学术
百度学术中相似的文章
[Sun, Tao]的文章
[Xu, Yongjun]的文章
[Zhang, Zhao]的文章
必应学术
必应学术中相似的文章
[Sun, Tao]的文章
[Xu, Yongjun]的文章
[Zhang, Zhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。