CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
ClassyTune: A Performance Auto-Tuner for Systems in the Cloud
Zhu, Yuqing1; Liu, Jianxun2
2022
发表期刊IEEE TRANSACTIONS ON CLOUD COMPUTING
ISSN2168-7161
卷号10期号:1页码:234-246
摘要Performance tuning can improve the system performance and thus enable the reduction of cloud computing resources needed to support an application. Due to the ever increasing number of parameters and complexity of systems, there is a necessity to automate performance tuning for the complicated systems in the cloud. The state-of-the-art tuning methods are adopting either the experience-driven tuning approach or the data-driven one. Data-driven tuning is attracting increasing attentions, as it has wider applicability. But existing data-driven methods cannot fully address the challenges of sample scarcity and high dimensionality simultaneously. We present ClassyTune, a data-driven automatic configuration tuning tool for cloud systems. ClassyTune exploits the machine learning model of classification for auto-tuning. This exploitation enables the induction of more training samples without increasing the input dimension. Experiments on seven popular systems in the cloud show that ClassyTune can effectively tune system performance to seven times higher for high-dimensional configuration space, outperforming expert tuning and the state-of-the-art auto-tuning solutions. We also describe a use case in which performance tuning enables the reduction of 33 percent computing resources needed to run an online stateless service.
关键词Performance tuning auto-tuning autotuner data-driven tuning experience-driven tuning performance modeling
DOI10.1109/TCC.2019.2936567
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2016YFB1000201] ; National Natural Science Foundation of China[61420106013] ; Youth Innovation Promotion Association of Chinese Academy of Sciences
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:000766635400019
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18947
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhu, Yuqing
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.UTuned Sci & Technol Co Ltd, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Yuqing,Liu, Jianxun. ClassyTune: A Performance Auto-Tuner for Systems in the Cloud[J]. IEEE TRANSACTIONS ON CLOUD COMPUTING,2022,10(1):234-246.
APA Zhu, Yuqing,&Liu, Jianxun.(2022).ClassyTune: A Performance Auto-Tuner for Systems in the Cloud.IEEE TRANSACTIONS ON CLOUD COMPUTING,10(1),234-246.
MLA Zhu, Yuqing,et al."ClassyTune: A Performance Auto-Tuner for Systems in the Cloud".IEEE TRANSACTIONS ON CLOUD COMPUTING 10.1(2022):234-246.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Yuqing]的文章
[Liu, Jianxun]的文章
百度学术
百度学术中相似的文章
[Zhu, Yuqing]的文章
[Liu, Jianxun]的文章
必应学术
必应学术中相似的文章
[Zhu, Yuqing]的文章
[Liu, Jianxun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。