CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Rubik: A Hierarchical Architecture for Efficient Graph Neural Network Training
Chen, Xiaobing1,2; Wang, Yuke3; Xie, Xinfeng4; Hu, Xing1; Basak, Abanti4; Liang, Ling4; Yan, Mingyu1; Deng, Lei5; Ding, Yufei3; Du, Zidong1; Xie, Yuan4
2022-04-01
发表期刊IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
ISSN0278-0070
卷号41期号:4页码:936-949
摘要The graph convolutional network (GCN) emerges as a promising direction to learn the inductive representation in graph data commonly used in widespread applications, such as E-commerce, social networks, and knowledge graphs. However, learning from graphs is nontrivial because of its mixed computation model involving both graph analytics and neural network computing. To this end, we decompose the GCN learning into two hierarchical paradigms: 1) graph-level and 2) node-level computing. Such a hierarchical paradigm facilitates the software and hardware accelerations for GCN learning. We propose a lightweight graph reordering methodology, incorporated with a GCN accelerator architecture that equips a customized cache design to fully utilize the graph-level data reuse. We also propose a mapping methodology aware of data reuse and task-level parallelism to handle various graphs inputs effectively. The results show that Rubik accelerator design improves energy efficiency by 26.3x-1375.2x than GPU platforms across different datasets and GCN models.
关键词Deep learning accelerator graph neural network (GNN)
DOI10.1109/TCAD.2021.3079142
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFA0700902] ; NSF of China[61925208] ; NSF of China[62002338] ; NSF of China[61732007] ; NSF of China[61732002] ; NSF of China[61906179] ; NSF of China[U19B2019] ; NSF of China[U20A20227] ; Beijing Natural Science Foundation[JQ18013] ; Strategic Priority Research Program of Chinese Academy of Science[XDB32050200] ; Strategic Priority Research Program of Chinese Academy of Science[XDC05010300] ; Beijing Academy of Artificial Intelligence (BAAI) ; Beijing Nova Program of Science and Technology[Z191100001119093] ; Youth Innovation Promotion Association CAS ; Xplore Prize
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号WOS:000770597100014
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:25[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18939
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Hu, Xing
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100190, Peoples R China
3.Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
4.Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
5.Tsinghua Univ, Dept Precis Instrument, Ctr Brain Inspired Comp Res, Beijing 10084, Peoples R China
推荐引用方式
GB/T 7714
Chen, Xiaobing,Wang, Yuke,Xie, Xinfeng,et al. Rubik: A Hierarchical Architecture for Efficient Graph Neural Network Training[J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,2022,41(4):936-949.
APA Chen, Xiaobing.,Wang, Yuke.,Xie, Xinfeng.,Hu, Xing.,Basak, Abanti.,...&Xie, Yuan.(2022).Rubik: A Hierarchical Architecture for Efficient Graph Neural Network Training.IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,41(4),936-949.
MLA Chen, Xiaobing,et al."Rubik: A Hierarchical Architecture for Efficient Graph Neural Network Training".IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 41.4(2022):936-949.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Xiaobing]的文章
[Wang, Yuke]的文章
[Xie, Xinfeng]的文章
百度学术
百度学术中相似的文章
[Chen, Xiaobing]的文章
[Wang, Yuke]的文章
[Xie, Xinfeng]的文章
必应学术
必应学术中相似的文章
[Chen, Xiaobing]的文章
[Wang, Yuke]的文章
[Xie, Xinfeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。