CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Low-Cost FPGA Implementation of Spiking Extreme Learning Machine With On-Chip Reward-Modulated STDP Learning
He, Zhen1; Shi, Cong1; Wang, Tengxiao1; Wang, Ying2; Tian, Min1; Zhou, Xichuan1; Li, Ping1; Liu, Liyuan3; Wu, Nanjian3; Luo, Gang4
2022-03-01
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS
ISSN1549-7747
卷号69期号:3页码:1657-1661
摘要For embedded, mobile and edge-computing intelligent applications, this brief proposes a low-cost real-time neuromorphic hardware system of spiking Extreme Learning Machine (ELM) equipped with on-chip triplet-based reward-modulated spike-timing-dependent plasticity (R-STDP) learning capability. Our design employs a time-step pipelined dual-core architecture consisting of parallel computing unit arrays to improve processing speed, as well as a trace-assisting learning mechanism and on-the-fly hidden layer weight re-generators to significantly reduce hardware resource costs. Our architecture is scalable to different spiking ELM sizes under different tradeoffs among processing speed, recognition accuracy and resource costs. Tests showed that the on-chip triplet R-STDP learning capability can help to achieve relatively high recognition accuracies on our hardware system. An FPGA prototype with low logic and memory resource consumption was implemented, achieving 93% and 78.5% recognition accuracies on the MNIST and Fashion-MNIST image datasets, respectively, at a speed of 30 frames per second (fps) for inference and 22.5 fps for on-chip learning.
关键词Neurons Hardware System-on-chip Costs Training Field programmable gate arrays Computational modeling Neuromorphic computing spiking neural network extreme learning machine spike-timing-dependent plasticity reward-modulated on-chip learning
DOI10.1109/TCSII.2021.3117699
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[U20A20205] ; Key Project of Chongqing Science and Technology Foundation[cstc2019jcyj-zdxmX0017] ; State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences[CARCH201908]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000770045800202
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18935
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shi, Cong
作者单位1.Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
4.Harvard Med Sch, Schepens Eye Res Inst, Dept Ophthalmol, Mass Eye & Ear, Boston, MA 02114 USA
推荐引用方式
GB/T 7714
He, Zhen,Shi, Cong,Wang, Tengxiao,et al. A Low-Cost FPGA Implementation of Spiking Extreme Learning Machine With On-Chip Reward-Modulated STDP Learning[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS,2022,69(3):1657-1661.
APA He, Zhen.,Shi, Cong.,Wang, Tengxiao.,Wang, Ying.,Tian, Min.,...&Luo, Gang.(2022).A Low-Cost FPGA Implementation of Spiking Extreme Learning Machine With On-Chip Reward-Modulated STDP Learning.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS,69(3),1657-1661.
MLA He, Zhen,et al."A Low-Cost FPGA Implementation of Spiking Extreme Learning Machine With On-Chip Reward-Modulated STDP Learning".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS 69.3(2022):1657-1661.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Zhen]的文章
[Shi, Cong]的文章
[Wang, Tengxiao]的文章
百度学术
百度学术中相似的文章
[He, Zhen]的文章
[Shi, Cong]的文章
[Wang, Tengxiao]的文章
必应学术
必应学术中相似的文章
[He, Zhen]的文章
[Shi, Cong]的文章
[Wang, Tengxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。