CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Quantum algorithm for online convex optimization
He, Jianhao1; Yang, Feidiao2; Zhang, Jialin2; Li, Lvzhou1
2022-04-01
发表期刊QUANTUM SCIENCE AND TECHNOLOGY
ISSN2058-9565
卷号7期号:2页码:18
摘要We explore whether quantum advantages can be found for the zeroth-order online convex optimization (OCO) problem, which is also known as bandit convex optimization with multi-point feedback. In this setting, given access to zeroth-order oracles (that is, the loss function is accessed as a black box that returns the function value for any queried input), a player attempts to minimize a sequence of adversarially generated convex loss functions. This procedure can be described as a T round iterative game between the player and the adversary. In this paper, we present quantum algorithms for the problem and show for the first time that potential quantum advantages are possible for problems of OCO. Specifically, our contributions are as follows. (i) When the player is allowed to query zeroth-order oracles O(1) times in each round as feedback, we give a quantum algorithm that achieves O(root T) regret without additional dependence of the dimension n, which outperforms the already known optimal classical algorithm only achieving O(root nT) regret. Note that the regret of our quantum algorithm has achieved the lower bound of classical first-order methods. (ii) We show that for strongly convex loss functions, the quantum algorithm can achieve O(log T) regret with O(1) queries as well, which means that the quantum algorithm can achieve the same regret bound as the classical algorithms in the full information setting.
关键词online convex optimization bandit convex optimization multi-point bandit feedback quantum optimization algorithms query complexity
DOI10.1088/2058-9565/ac5919
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61772565] ; Basic and Applied Basic Research Foundation of Guangdong Province[2020B1515020050] ; Key Research and Development Project of Guangdong Province[2018B030325001]
WOS研究方向Physics
WOS类目Quantum Science & Technology ; Physics, Multidisciplinary
WOS记录号WOS:000774592800001
出版者IOP Publishing Ltd
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18921
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Lvzhou
作者单位1.Sun Yat Sen Univ, Sch Comp Sci & Engn, Inst Quantum Comp & Comp Sci Theory, Guangzhou, Guangdong, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
He, Jianhao,Yang, Feidiao,Zhang, Jialin,et al. Quantum algorithm for online convex optimization[J]. QUANTUM SCIENCE AND TECHNOLOGY,2022,7(2):18.
APA He, Jianhao,Yang, Feidiao,Zhang, Jialin,&Li, Lvzhou.(2022).Quantum algorithm for online convex optimization.QUANTUM SCIENCE AND TECHNOLOGY,7(2),18.
MLA He, Jianhao,et al."Quantum algorithm for online convex optimization".QUANTUM SCIENCE AND TECHNOLOGY 7.2(2022):18.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Jianhao]的文章
[Yang, Feidiao]的文章
[Zhang, Jialin]的文章
百度学术
百度学术中相似的文章
[He, Jianhao]的文章
[Yang, Feidiao]的文章
[Zhang, Jialin]的文章
必应学术
必应学术中相似的文章
[He, Jianhao]的文章
[Yang, Feidiao]的文章
[Zhang, Jialin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。