CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Automated segmentation of normal and diseased coronary arteries-The ASOCA challenge
Gharleghi, Ramtin1; Adikari, Dona2,3; Ellenberger, Katy2,3; Ooi, Sze-Yuan2,3; Ellis, Chris4; Chen, Chung-Ming5; Gao, Ruochen6; He, Yuting8; Hussain, Raabid7; Lee, Chia-Yen10; Li, Jun6; Ma, Jun11; Nie, Ziwei12; Oliveira, Bruno13,14,15; Qi, Yaolei8; Skandarani, Youssef7,9; Vilaca, Joao L.13; Wang, Xiyue16; Yang, Sen17; Sowmya, Arcot18; Beier, Susann1
2022-04-01
发表期刊COMPUTERIZED MEDICAL IMAGING AND GRAPHICS
ISSN0895-6111
卷号97页码:8
摘要Cardiovascular disease is a major cause of death worldwide. Computed Tomography Coronary Angiography (CTCA) is a non-invasive method used to evaluate coronary artery disease, as well as evaluating and recon-structing heart and coronary vessel structures. Reconstructed models have a wide array of for educational, training and research applications such as the study of diseased and non-diseased coronary anatomy, machine learning based disease risk prediction and in-silico and in-vitro testing of medical devices. However, coronary arteries are difficult to image due to their small size, location, and movement, causing poor resolution and ar-tefacts. Segmentation of coronary arteries has traditionally focused on semi-automatic methods where a human expert guides the algorithm and corrects errors, which severely limits large-scale applications and integration within clinical systems. International challenges aiming to overcome this barrier have focussed on specific tasks such as centreline extraction, stenosis quantification, and segmentation of specific artery segments only. Here we present the results of the first challenge to develop fully automatic segmentation methods of full coronary artery trees and establish the first large standardized dataset of normal and diseased arteries. This forms a new auto-mated segmentation benchmark allowing the automated processing of CTCAs directly relevant for large-scale and personalized clinical applications.
关键词Coronary arteries Image segmentation Machine learning
DOI10.1016/j.compmedimag.2022.102049
收录类别SCI
语种英语
资助项目Auckland Academic Health Alliance (AAHA) ; Auckland Medical Research Foundation (AMRF) ; Northern Portugal Regional Operational Programme (Norte2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER)[NORTE-010145-FEDER-000045] ; FCT ; European Social Found, through Programa Operacional Capital Humano (POCH)[SFRH/BD/136721/2018]
WOS研究方向Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000787887200007
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:22[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18885
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gharleghi, Ramtin
作者单位1.Univ New South Wales, Sch Mech & Mfg Engn, Sydney, NSW, Australia
2.UNSW Sydney, Prince Wales Clin Sch Med, Sydney, NSW, Australia
3.Prince Wales Hosp, Dept Cardiol, Sydney, NSW, Australia
4.Auckland City Hosp, Auckland, New Zealand
5.Natl Taiwan Univ, Inst Biomed Engn, Taipei, Taiwan
6.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
7.Univ Burgundy, ImViA Lab, Dijon, France
8.Southeast Univ, Nanjing, Jiangsu, Peoples R China
9.CASIS Inc, Dijon, France
10.Natl United Univ, Dept Elect Engn, Miaoli, Miaoli County, Taiwan
11.Nanjing Univ Sci & Technol, Nanjing, Jiangsu, Peoples R China
12.Nanjing Univ, Nanjing, Jiangsu, Peoples R China
13.Polytech Inst Cavado & Ave, 2Ai Sch Technol, Barcelos, Portugal
14.Univ Minho, Sch Med, Life & Hlth Sci Res Inst ICVS, Braga, Portugal
15.Univ Minho, Algoritmi Ctr, Sch Engn, Guimaraes, Portugal
16.Sichuan Univ, Coll Comp Sci, Chengdu, Peoples R China
17.Sichuan Univ, Coll Biomed Engn, Chengdu, Peoples R China
18.Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia
推荐引用方式
GB/T 7714
Gharleghi, Ramtin,Adikari, Dona,Ellenberger, Katy,et al. Automated segmentation of normal and diseased coronary arteries-The ASOCA challenge[J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS,2022,97:8.
APA Gharleghi, Ramtin.,Adikari, Dona.,Ellenberger, Katy.,Ooi, Sze-Yuan.,Ellis, Chris.,...&Beier, Susann.(2022).Automated segmentation of normal and diseased coronary arteries-The ASOCA challenge.COMPUTERIZED MEDICAL IMAGING AND GRAPHICS,97,8.
MLA Gharleghi, Ramtin,et al."Automated segmentation of normal and diseased coronary arteries-The ASOCA challenge".COMPUTERIZED MEDICAL IMAGING AND GRAPHICS 97(2022):8.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gharleghi, Ramtin]的文章
[Adikari, Dona]的文章
[Ellenberger, Katy]的文章
百度学术
百度学术中相似的文章
[Gharleghi, Ramtin]的文章
[Adikari, Dona]的文章
[Ellenberger, Katy]的文章
必应学术
必应学术中相似的文章
[Gharleghi, Ramtin]的文章
[Adikari, Dona]的文章
[Ellenberger, Katy]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。