CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
NET: Deep Generative Networks for Textured Meshes
Gao, Lin1,2; Wu, Tong1,2; Yu-Jie Yuan1,2; Ming-Xian Lin1,2; Yu-Kun Lai3; Zhang, Hao4
2021-12-01
发表期刊ACM TRANSACTIONS ON GRAPHICS
ISSN0730-0301
卷号40期号:6页码:15
摘要We introduce TM-NET, a novel deep generative model for synthesizing textured meshes in a part-aware manner. Once trained, the network can generate novel textured meshes from scratch or predict textures for a given 3D mesh, without image guidance. Plausible and diverse textures can be generated for the same mesh part, while texture compatibility between parts in the same shape is achieved via conditional generation. Specifically, our method produces texture maps for individual shape parts, each as a deformable box, leading to a natural UV map with limited distortion. The network separately embeds part geometry (via a PartVAE) and part texture (via a TextureVAE) into their respective latent spaces, so as to facilitate learning texture probability distributions conditioned on geometry. We introduce a conditional autoregressive model for texture generation, which can be conditioned on both part geometry and textures already generated for other parts to achieve texture compatibility. To produce high-frequency texture details, our TextureVAE operates in a high-dimensional latent space via dictionary-based vector quantization. We also exploit transparencies in the texture as an effective means to model complex shape structures including topological details. Extensive experiments demonstrate the plausibility, quality, and diversity of the textures and geometries generated by our network, while avoiding inconsistency issues that are common to novel view synthesis methods.
关键词Mesh representation Mesh texture Shape generation
DOI10.1145/3478513.3480503
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62061136007] ; National Natural Science Foundation of China[61872440] ; Royal Society Newton Advanced Fellowship ; NAF[\R2\192151] ; Youth Innovation Promotion Association CAS
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000729846700068
出版者ASSOC COMPUTING MACHINERY
引用统计
被引频次:18[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18356
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Lin
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Cardiff Univ, Sch Comp Sci & Informat, Cardiff, Wales
4.Simon Fraser Univ, Sch Comp Sci, Burnaby, BC, Canada
推荐引用方式
GB/T 7714
Gao, Lin,Wu, Tong,Yu-Jie Yuan,et al. NET: Deep Generative Networks for Textured Meshes[J]. ACM TRANSACTIONS ON GRAPHICS,2021,40(6):15.
APA Gao, Lin,Wu, Tong,Yu-Jie Yuan,Ming-Xian Lin,Yu-Kun Lai,&Zhang, Hao.(2021).NET: Deep Generative Networks for Textured Meshes.ACM TRANSACTIONS ON GRAPHICS,40(6),15.
MLA Gao, Lin,et al."NET: Deep Generative Networks for Textured Meshes".ACM TRANSACTIONS ON GRAPHICS 40.6(2021):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Lin]的文章
[Wu, Tong]的文章
[Yu-Jie Yuan]的文章
百度学术
百度学术中相似的文章
[Gao, Lin]的文章
[Wu, Tong]的文章
[Yu-Jie Yuan]的文章
必应学术
必应学术中相似的文章
[Gao, Lin]的文章
[Wu, Tong]的文章
[Yu-Jie Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。