Institute of Computing Technology, Chinese Academy IR
| Spatiotemporal Activity Modeling via Hierarchical Cross-Modal Embedding | |
| Liu, Yang1,2; Ao, Xiang1,2; Dong, Linfeng1,2; Zhang, Chao3; Wang, Jin4; He, Qing1,2 | |
| 2022 | |
| 发表期刊 | IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
![]() |
| ISSN | 1041-4347 |
| 卷号 | 34期号:1页码:462-474 |
| 摘要 | With the ever-increasing urbanization process, modeling people's spatiotemporal activities from their online traces has become a crucial task. State-of-the-art methods for this task rely on cross-modal embedding, which maps items from different modalities (e.g., location, time, text) into the same latent space. Despite their inspiring results, existing cross-modal embedding methods merely capture co-occurrences between items without modeling their high-order interactions. In this paper, we first construct two graphs from raw data records to represent the user interaction graph layer and activity graph layer and propose a hierarchical cross-modal embedding method that takes the high-order relationships into consideration. The key notion behind our method is a novel hierarchical embedding framework with meta-graphs connecting different layers. We introduce both inter-record and intra-record meta-graph structures, which enable learning distributed representations that preserve high-order proximities across graphs from different layers. Our empirical experiments on three real-world datasets demonstrate that our method not only outperforms state-of-the-art methods for spatiotemporal activity prediction, but also captures cross-modal proximity at a finer granularity. |
| 关键词 | Spatiotemporal activity mobile data cross-modal hierarchical embedding |
| DOI | 10.1109/TKDE.2020.2983892 |
| 收录类别 | SCI |
| 语种 | 英语 |
| 资助项目 | National Key Research and Development Program of China[2017YFB1002104] ; National Natural Science Foundation of China[61976204] ; National Natural Science Foundation of China[U1811461] ; Project of Youth Innovation Promotion Association CAS ; Natural Science Foundation of Chongqing[cstc2019jcyj-msxmX0149] |
| WOS研究方向 | Computer Science ; Engineering |
| WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic |
| WOS记录号 | WOS:000728576400032 |
| 出版者 | IEEE COMPUTER SOC |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.204/handle/2XEOYT63/18343 |
| 专题 | 中国科学院计算技术研究所期刊论文_英文 |
| 通讯作者 | Ao, Xiang |
| 作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc Chinese Acad Sc, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Georgia Tech, Coll Comp, Atlanta, GA 30332 USA 4.Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA |
| 推荐引用方式 GB/T 7714 | Liu, Yang,Ao, Xiang,Dong, Linfeng,et al. Spatiotemporal Activity Modeling via Hierarchical Cross-Modal Embedding[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2022,34(1):462-474. |
| APA | Liu, Yang,Ao, Xiang,Dong, Linfeng,Zhang, Chao,Wang, Jin,&He, Qing.(2022).Spatiotemporal Activity Modeling via Hierarchical Cross-Modal Embedding.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,34(1),462-474. |
| MLA | Liu, Yang,et al."Spatiotemporal Activity Modeling via Hierarchical Cross-Modal Embedding".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 34.1(2022):462-474. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论