Institute of Computing Technology, Chinese Academy IR
Spatiotemporal Activity Modeling via Hierarchical Cross-Modal Embedding | |
Liu, Yang1,2; Ao, Xiang1,2; Dong, Linfeng1,2; Zhang, Chao3; Wang, Jin4; He, Qing1,2 | |
2022 | |
发表期刊 | IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING |
ISSN | 1041-4347 |
卷号 | 34期号:1页码:462-474 |
摘要 | With the ever-increasing urbanization process, modeling people's spatiotemporal activities from their online traces has become a crucial task. State-of-the-art methods for this task rely on cross-modal embedding, which maps items from different modalities (e.g., location, time, text) into the same latent space. Despite their inspiring results, existing cross-modal embedding methods merely capture co-occurrences between items without modeling their high-order interactions. In this paper, we first construct two graphs from raw data records to represent the user interaction graph layer and activity graph layer and propose a hierarchical cross-modal embedding method that takes the high-order relationships into consideration. The key notion behind our method is a novel hierarchical embedding framework with meta-graphs connecting different layers. We introduce both inter-record and intra-record meta-graph structures, which enable learning distributed representations that preserve high-order proximities across graphs from different layers. Our empirical experiments on three real-world datasets demonstrate that our method not only outperforms state-of-the-art methods for spatiotemporal activity prediction, but also captures cross-modal proximity at a finer granularity. |
关键词 | Spatiotemporal activity mobile data cross-modal hierarchical embedding |
DOI | 10.1109/TKDE.2020.2983892 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2017YFB1002104] ; National Natural Science Foundation of China[61976204] ; National Natural Science Foundation of China[U1811461] ; Project of Youth Innovation Promotion Association CAS ; Natural Science Foundation of Chongqing[cstc2019jcyj-msxmX0149] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000728576400032 |
出版者 | IEEE COMPUTER SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/18343 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Ao, Xiang |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc Chinese Acad Sc, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Georgia Tech, Coll Comp, Atlanta, GA 30332 USA 4.Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA |
推荐引用方式 GB/T 7714 | Liu, Yang,Ao, Xiang,Dong, Linfeng,et al. Spatiotemporal Activity Modeling via Hierarchical Cross-Modal Embedding[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2022,34(1):462-474. |
APA | Liu, Yang,Ao, Xiang,Dong, Linfeng,Zhang, Chao,Wang, Jin,&He, Qing.(2022).Spatiotemporal Activity Modeling via Hierarchical Cross-Modal Embedding.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,34(1),462-474. |
MLA | Liu, Yang,et al."Spatiotemporal Activity Modeling via Hierarchical Cross-Modal Embedding".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 34.1(2022):462-474. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论