CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning on 3D Meshes With Laplacian Encoding and Pooling
Qiao, Yi-Ling1,2; Gao, Lin1,3; Yang, Jie1,3; Rosin, Paul L.4; Lai, Yu-Kun4; Chen, Xilin3,5
2022-02-01
发表期刊IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
ISSN1077-2626
卷号28期号:2页码:1317-1327
摘要3D models are commonly used in computer vision and graphics. With the wider availability of mesh data, an efficient and intrinsic deep learning approach to processing 3D meshes is in great need. Unlike images, 3D meshes have irregular connectivity, requiring careful design to capture relations in the data. To utilize the topology information while staying robust under different triangulations, we propose to encode mesh connectivity using Laplacian spectral analysis, along with mesh feature aggregation blocks (MFABs) that can split the surface domain into local pooling patches and aggregate global information amongst them. We build a mesh hierarchy from fine to coarse using Laplacian spectral clustering, which is flexible under isometric transformations. Inside the MFABs there are pooling layers to collect local information and multi-layer perceptrons to compute vertex features of increasing complexity. To obtain the relationships among different clusters, we introduce a Correlation Net to compute a correlation matrix, which can aggregate the features globally by matrix multiplication with cluster features. Our network architecture is flexible enough to be used on meshes with different numbers of vertices. We conduct several experiments including shape segmentation and classification, and our method outperforms state-of-the-art algorithms for these tasks on the ShapeNet and COSEG datasets.
关键词Three-dimensional displays Laplace equations Shape Correlation Machine learning Topology Computational modeling Mesh processing segmentation laplacian deep learning
DOI10.1109/TVCG.2020.3014449
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61872440] ; National Natural Science Foundation of China[61828204] ; Beijing Municipal Natural Science Foundation[L182016] ; Royal Society Newton Advanced Fellowship[NAFnR2n192151] ; Youth Innovation Promotion Association CAS ; CCF-Tencent Open Fund ; Open Project Program of the National Laboratory of Pattern Recognition[201900055]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000736740300009
出版者IEEE COMPUTER SOC
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18317
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Lin
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100864, Peoples R China
2.Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF10 3AT, Wales
5.Chinese Acad Sci, Inst Comp Technol, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Qiao, Yi-Ling,Gao, Lin,Yang, Jie,et al. Learning on 3D Meshes With Laplacian Encoding and Pooling[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2022,28(2):1317-1327.
APA Qiao, Yi-Ling,Gao, Lin,Yang, Jie,Rosin, Paul L.,Lai, Yu-Kun,&Chen, Xilin.(2022).Learning on 3D Meshes With Laplacian Encoding and Pooling.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,28(2),1317-1327.
MLA Qiao, Yi-Ling,et al."Learning on 3D Meshes With Laplacian Encoding and Pooling".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 28.2(2022):1317-1327.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qiao, Yi-Ling]的文章
[Gao, Lin]的文章
[Yang, Jie]的文章
百度学术
百度学术中相似的文章
[Qiao, Yi-Ling]的文章
[Gao, Lin]的文章
[Yang, Jie]的文章
必应学术
必应学术中相似的文章
[Qiao, Yi-Ling]的文章
[Gao, Lin]的文章
[Yang, Jie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。