Institute of Computing Technology, Chinese Academy IR
Task-Adaptive Attention for Image Captioning | |
Yan, Chenggang1,2; Hao, Yiming1; Li, Liang3; Yin, Jian1; Liu, Anan4; Mao, Zhendong5; Chen, Zhenyu6,7; Gao, Xingyu8 | |
2022 | |
发表期刊 | IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY |
ISSN | 1051-8215 |
卷号 | 32期号:1页码:43-51 |
摘要 | Attention mechanisms are now widely used in image captioning models. However, most attention models only focus on visual features. When generating syntax related words, little visual information is needed. In this case, these attention models could mislead the word generation. In this paper, we propose Task-Adaptive Attention module for image captioning, which can alleviate this misleading problem and learn implicit non-visual clues which can be helpful for the generation of non-visual words. We further introduce a diversity regularization to enhance the expression ability of the Task-Adaptive Attention module. Extensive experiments on the MSCOCO captioning dataset demonstrate that by plugging our Task-Adaptive Attention module into a vanilla Transformer-based image captioning model, performance improvement can be achieved. |
关键词 | Task analysis Visualization Feature extraction Decoding Computational modeling Adaptation models Feeds Image captioning attention mechanism transformer |
DOI | 10.1109/TCSVT.2021.3067449 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2020YFB1406604] ; National Natural Science Foundation of China[61771457] ; National Natural Science Foundation of China[61732007] ; National Natural Science Foundation of China[61931008] ; National Natural Science Foundation of China[61672497] ; National Natural Science Foundation of China[61971268] ; National Natural Science Foundation of China[61772494] ; National Natural Science Foundation of China[62022083] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Electrical & Electronic |
WOS记录号 | WOS:000742183600008 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/18267 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Li, Liang |
作者单位 | 1.Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Peoples R China 2.Hangzhou Dianzi Univ, Dept Automat, Hangzhou 310018, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China 4.Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China 5.Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230052, Peoples R China 6.State Grid Corp China, Big Data Ctr, Beijing 100031, Peoples R China 7.China Elect Power Res Inst, Beijing 100192, Peoples R China 8.Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China |
推荐引用方式 GB/T 7714 | Yan, Chenggang,Hao, Yiming,Li, Liang,et al. Task-Adaptive Attention for Image Captioning[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2022,32(1):43-51. |
APA | Yan, Chenggang.,Hao, Yiming.,Li, Liang.,Yin, Jian.,Liu, Anan.,...&Gao, Xingyu.(2022).Task-Adaptive Attention for Image Captioning.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,32(1),43-51. |
MLA | Yan, Chenggang,et al."Task-Adaptive Attention for Image Captioning".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 32.1(2022):43-51. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论