Institute of Computing Technology, Chinese Academy IR
Learning policy scheduling for text augmentation | |
Li, Shuokai; Ao, Xiang1; Pan, Feiyang; He, Qing | |
2022 | |
发表期刊 | NEURAL NETWORKS |
ISSN | 0893-6080 |
卷号 | 145页码:121-127 |
摘要 | When training deep learning models, data augmentation is an important technique to improve the performance and alleviate overfitting. In natural language processing (NLP), existing augmentation methods often use fixed strategies. However, it might be preferred to use different augmentation policies in different stage of training, and different datasets may require different augmentation policies. In this paper, we take dynamic policy scheduling into consideration. We design a search space over augmentation policies by integrating several common augmentation operations. Then, we adopt a population based training method to search the best augmentation schedule. We conduct extensive experiments on five text classification and two machine translation tasks. The results show that the optimized dynamic augmentation schedules achieve significant improvements against previous methods. (C) 2021 Elsevier Ltd. All rights reserved. |
关键词 | Data augmentation Text classification |
DOI | 10.1016/j.neunet.2021.09.028 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and De-velopment Program of China[2017YFB1002104] ; National Natural Science Foundation of China[92046003] ; National Natural Science Foundation of China[61976204] ; National Natural Science Foundation of China[U1811461] ; Project of Youth Innovation Promotion Association CAS ; Beijing Nova Program[Z201100006820062] ; Ant Financial through the Ant Financial Science Funds for Security Research |
WOS研究方向 | Computer Science ; Neurosciences & Neurology |
WOS类目 | Computer Science, Artificial Intelligence ; Neurosciences |
WOS记录号 | WOS:000717665500006 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/18112 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Ao, Xiang |
作者单位 | 1.Chinese Acad Sci, CAS, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China 2.Univ Chinese Acad Sci, Beijing, Peoples R China 3.Inst Intelligent Comp Technol, Suzhou, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Shuokai,Ao, Xiang,Pan, Feiyang,et al. Learning policy scheduling for text augmentation[J]. NEURAL NETWORKS,2022,145:121-127. |
APA | Li, Shuokai,Ao, Xiang,Pan, Feiyang,&He, Qing.(2022).Learning policy scheduling for text augmentation.NEURAL NETWORKS,145,121-127. |
MLA | Li, Shuokai,et al."Learning policy scheduling for text augmentation".NEURAL NETWORKS 145(2022):121-127. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论