CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning policy scheduling for text augmentation
Li, Shuokai; Ao, Xiang1; Pan, Feiyang; He, Qing
2022
发表期刊NEURAL NETWORKS
ISSN0893-6080
卷号145页码:121-127
摘要When training deep learning models, data augmentation is an important technique to improve the performance and alleviate overfitting. In natural language processing (NLP), existing augmentation methods often use fixed strategies. However, it might be preferred to use different augmentation policies in different stage of training, and different datasets may require different augmentation policies. In this paper, we take dynamic policy scheduling into consideration. We design a search space over augmentation policies by integrating several common augmentation operations. Then, we adopt a population based training method to search the best augmentation schedule. We conduct extensive experiments on five text classification and two machine translation tasks. The results show that the optimized dynamic augmentation schedules achieve significant improvements against previous methods. (C) 2021 Elsevier Ltd. All rights reserved.
关键词Data augmentation Text classification
DOI10.1016/j.neunet.2021.09.028
收录类别SCI
语种英语
资助项目National Key Research and De-velopment Program of China[2017YFB1002104] ; National Natural Science Foundation of China[92046003] ; National Natural Science Foundation of China[61976204] ; National Natural Science Foundation of China[U1811461] ; Project of Youth Innovation Promotion Association CAS ; Beijing Nova Program[Z201100006820062] ; Ant Financial through the Ant Financial Science Funds for Security Research
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:000717665500006
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18112
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ao, Xiang
作者单位1.Chinese Acad Sci, CAS, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Inst Intelligent Comp Technol, Suzhou, Peoples R China
推荐引用方式
GB/T 7714
Li, Shuokai,Ao, Xiang,Pan, Feiyang,et al. Learning policy scheduling for text augmentation[J]. NEURAL NETWORKS,2022,145:121-127.
APA Li, Shuokai,Ao, Xiang,Pan, Feiyang,&He, Qing.(2022).Learning policy scheduling for text augmentation.NEURAL NETWORKS,145,121-127.
MLA Li, Shuokai,et al."Learning policy scheduling for text augmentation".NEURAL NETWORKS 145(2022):121-127.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Shuokai]的文章
[Ao, Xiang]的文章
[Pan, Feiyang]的文章
百度学术
百度学术中相似的文章
[Li, Shuokai]的文章
[Ao, Xiang]的文章
[Pan, Feiyang]的文章
必应学术
必应学术中相似的文章
[Li, Shuokai]的文章
[Ao, Xiang]的文章
[Pan, Feiyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。