CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
PRDP: Person Reidentification With Dirty and Poor Data
Xu, Furong1; Ma, Bingpeng1; Chang, Hong1,2; Shan, Shiguang1,3,4
2021-09-01
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
ISSN2168-2267
页码13
摘要In this article, we propose a novel method to simultaneously solve the data problem of dirty quality and poor quantity for person reidentification (ReID). Dirty quality refers to the wrong labels in image annotations. Poor quantity means that some identities have very few images (FewIDs). Training with these mislabeled data or FewIDs with triplet loss will lead to low generalization performance. To solve the label error problem, we propose a weighted label correction based on cross-entropy (wLCCE) strategy. Specifically, according to the influence range of the wrong labels, we first classify the mislabeled images into point label error and set label error. Then, we propose a weighted triplet loss (WTL) to correct the two label errors, respectively. To alleviate the poor quantity issue, we propose a feature simulation based on autoencoder (FSAE) method to generate some virtual samples for FewID. For the authenticity of the simulated features, we transfer the difference pattern of identities with multiple images (MultIDs) to FewIDs by training an autoencoder (AE)-based simulator. In this way, the FewIDs obtain richer expressions to distinguish from other identities. By dealing with a dirty and poor data problem, we can learn more robust ReID models using the triplet loss. We conduct extensive experiments on two public person ReID datasets: 1) Market-1501 and 2) DukeMTMC-reID, to verify the effectiveness of our approach.
关键词Training Noise measurement Data models Task analysis Training data Predictive models Heuristic algorithms Dirty metric learning person reidentification (ReID) poor
DOI10.1109/TCYB.2021.3105970
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFA0700800] ; Natural Science Foundation of China (NSFC)[61876171] ; Natural Science Foundation of China (NSFC)[61976203] ; Open Project Fund from the Shenzhen Institute of Artificial Intelligence and Robotics for Society[AC01202005015]
WOS研究方向Automation & Control Systems ; Computer Science
WOS类目Automation & Control Systems ; Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000732360900001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18010
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ma, Bingpeng
作者单位1.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
4.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai 200031, Peoples R China
推荐引用方式
GB/T 7714
Xu, Furong,Ma, Bingpeng,Chang, Hong,et al. PRDP: Person Reidentification With Dirty and Poor Data[J]. IEEE TRANSACTIONS ON CYBERNETICS,2021:13.
APA Xu, Furong,Ma, Bingpeng,Chang, Hong,&Shan, Shiguang.(2021).PRDP: Person Reidentification With Dirty and Poor Data.IEEE TRANSACTIONS ON CYBERNETICS,13.
MLA Xu, Furong,et al."PRDP: Person Reidentification With Dirty and Poor Data".IEEE TRANSACTIONS ON CYBERNETICS (2021):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Furong]的文章
[Ma, Bingpeng]的文章
[Chang, Hong]的文章
百度学术
百度学术中相似的文章
[Xu, Furong]的文章
[Ma, Bingpeng]的文章
[Chang, Hong]的文章
必应学术
必应学术中相似的文章
[Xu, Furong]的文章
[Ma, Bingpeng]的文章
[Chang, Hong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。