CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
MPC-CSAS: Multi-Party Computation for Real-Time Privacy-Preserving Speed Advisory Systems
Liu, Mingming1; Cheng, Long2; Gu, Yingqi3; Wang, Ying4; Liu, Qingzhi5; O'Connor, Noel E.1,6
2021-01-28
发表期刊IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
ISSN1524-9050
页码7
摘要As a part of Advanced Driver Assistance Systems (ADASs), Consensus-based Speed Advisory Systems (CSAS) have been proposed to recommend a common speed to a group of vehicles for specific application purposes, such as emission control and energy management. With Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) technologies and advanced control theories in place, state-of-the-art CSAS can be designed to get an optimal speed in a privacy-preserving and decentralized manner. However, the current method only works for specific cost functions of vehicles, and its execution usually involves many algorithm iterations leading long convergence time. Therefore, the state-of-the-art design method is not applicable to a CSAS design which requires real-time decision making. In this article, we address the problem by introducing MPC-CSAS, a Multi-Party Computation (MPC) based design approach for privacy-preserving CSAS. Our proposed method is simple to implement and applicable to all types of cost functions of vehicles. Moreover, our simulation results show that the proposed MPC-CSAS can achieve very promising system performance in just one algorithm iteration without using extra infrastructure for a typical CSAS.
关键词Cost function Urban areas Real-time systems Roads Privacy Convergence Base stations Speed advisory systems multi-party computation vehicle networks optimal consensus algorithm
DOI10.1109/TITS.2021.3052840
收录类别SCI
语种英语
资助项目Science Foundation Ireland[SFI/12/RC/2289_P2]
WOS研究方向Engineering ; Transportation
WOS类目Engineering, Civil ; Engineering, Electrical & Electronic ; Transportation Science & Technology
WOS记录号WOS:000732115400001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17983
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cheng, Long
作者单位1.Dublin City Univ, Sch Elect Engn, Dublin D09 V209 9, Ireland
2.Dublin City Univ, Sch Comp, Dublin D09 V209 9, Ireland
3.Dublin City Univ, Insight Ctr Data Analyt, Dublin D09 V209 9, Ireland
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
5.Wageningen Univ & Res, Informat Technol Grp, NL-6708 PB Wageningen, Netherlands
6.Dublin City Univ, SFI Insight Ctr Data Analyt, Dublin D09 V209 9, Ireland
推荐引用方式
GB/T 7714
Liu, Mingming,Cheng, Long,Gu, Yingqi,et al. MPC-CSAS: Multi-Party Computation for Real-Time Privacy-Preserving Speed Advisory Systems[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2021:7.
APA Liu, Mingming,Cheng, Long,Gu, Yingqi,Wang, Ying,Liu, Qingzhi,&O'Connor, Noel E..(2021).MPC-CSAS: Multi-Party Computation for Real-Time Privacy-Preserving Speed Advisory Systems.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,7.
MLA Liu, Mingming,et al."MPC-CSAS: Multi-Party Computation for Real-Time Privacy-Preserving Speed Advisory Systems".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS (2021):7.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Mingming]的文章
[Cheng, Long]的文章
[Gu, Yingqi]的文章
百度学术
百度学术中相似的文章
[Liu, Mingming]的文章
[Cheng, Long]的文章
[Gu, Yingqi]的文章
必应学术
必应学术中相似的文章
[Liu, Mingming]的文章
[Cheng, Long]的文章
[Gu, Yingqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。