CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Zero-Shot Embedding via Regularization-Based Recollection and Residual Familiarity Processes
Lyu, Mengyao1; Han, Hu2,3; Bai, Xiangzhi4,5,6
2021-08-16
发表期刊IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
ISSN2168-2216
页码18
摘要The goal of zero-shot learning (ZSL) is to transfer knowledge learned from seen classes during training to unseen classes for testing, with the help of auxiliary information, such as attributes and descriptions. Most of the existing methods view ZSL as a label-embedding problem, in which class and image representations are embedded to a common space. However, many methods either show a bias toward seen classes caused by the projection domain-shift problem, or sacrifice the performance of seen classes to generalize to unseen ones. In this article, we present an embedding approach for ZSL, which is motivated by human recognition memory, namely, recollection and familiarity (R&F). We propose a decoder to regularize the nonlinear mapping between the semantic space and the visual space, which represents the reasonable recollection process, and use a residual block to refine the recognition ability for seen classes, which indicates the familiarity process. R&F can generalize well to unseen classes, while retaining the discriminative ability for the seen classes. Extensive experiments are conducted on Animals with Attribute (AwA1), Animals with Attributes 2 (AwA2), Attribute Pascal&Yahoo (aPY), SUN Attribute (SUN), Caltech-UCSD-Birds 200-2011 (CUB), and ImageNet databases. As qualitative and quantitative results show, the proposed approach outperforms state-of-the-art embedding-based methods by a large margin and significantly alleviates the projection domain-shift problem.
关键词Embedding-based method image classification knowledge transfer zero-shot learning (ZSL)
DOI10.1109/TSMC.2021.3102834
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2019YFB1311301] ; National Natural Science Foundation of China[U1736217] ; Youth Innovation Promotion Association CAS[2018135]
WOS研究方向Automation & Control Systems ; Computer Science
WOS类目Automation & Control Systems ; Computer Science, Cybernetics
WOS记录号WOS:000732300600001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17945
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Bai, Xiangzhi
作者单位1.Beihang Univ, Image Proc Ctr, Beijing 102206, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
3.Peng Cheng Lab, Shenzhen 518055, Peoples R China
4.Beihang Univ, Image Proc Ctr, Beijing 102206, Peoples R China
5.Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
6.Beihang Univ, Adv Innovat Ctr Biomed Engn, Beijing 100083, Peoples R China
推荐引用方式
GB/T 7714
Lyu, Mengyao,Han, Hu,Bai, Xiangzhi. Zero-Shot Embedding via Regularization-Based Recollection and Residual Familiarity Processes[J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS,2021:18.
APA Lyu, Mengyao,Han, Hu,&Bai, Xiangzhi.(2021).Zero-Shot Embedding via Regularization-Based Recollection and Residual Familiarity Processes.IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS,18.
MLA Lyu, Mengyao,et al."Zero-Shot Embedding via Regularization-Based Recollection and Residual Familiarity Processes".IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS (2021):18.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lyu, Mengyao]的文章
[Han, Hu]的文章
[Bai, Xiangzhi]的文章
百度学术
百度学术中相似的文章
[Lyu, Mengyao]的文章
[Han, Hu]的文章
[Bai, Xiangzhi]的文章
必应学术
必应学术中相似的文章
[Lyu, Mengyao]的文章
[Han, Hu]的文章
[Bai, Xiangzhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。