CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
SVLR: Genome Structural Variant Detection Using Long-Read Sequencing Data
Gu, Wenyan1; Zhou, Aizhong1; Wang, Lusheng2; Sun, Shiwei3; Cui, Xuefeng1; Zhu, Daming1
2021-05-10
发表期刊JOURNAL OF COMPUTATIONAL BIOLOGY
ISSN1066-5277
页码15
摘要Genome structural variants (SVs) have great impacts on human phenotype and diversity, and have been linked to numerous diseases. Long-read sequencing technologies arise to make it possible to find SVs of as long as 10,000 nucleotides. Thus, long read-based SV detection has been drawing attention of many recent research projects, and many tools have been developed for long reads to detect SVs recently. In this article, we present a new method, called SVLR, to detect SVs based on long-read sequencing data. Comparing with existing methods, SVLR can detect three new kinds of SVs: block replacements, block interchanges, and translocations. Although these new SVs are structurally more complicated, SVLR achieves accuracies that are comparable with those of the classic SVs. Moreover, for the classic SVs that can be detected by state-of-the-art methods (e.g., SVIM and Sniffles), our experiments demonstrate recall improvements of up to 38% without harming the precisions (i.e., >78%). We also point out three directions to further improve SV detection in the future. Source codes: https://github.com/GWYSDU/SVLR
关键词genome structural variant genome structural variant detection long-read sequencing and single-molecule sequencing third-generation sequencing
DOI10.1089/cmb.2021.0048
收录类别SCI
语种英语
资助项目National Science Foundation of China[61732009] ; National Science Foundation of China[61761136017] ; National Science Foundation of China[62072283]
WOS研究方向Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics
WOS类目Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号WOS:000649049200001
出版者MARY ANN LIEBERT, INC
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17843
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cui, Xuefeng; Zhu, Daming
作者单位1.Shandong Univ, Sch Comp Sci & Technol, Qingdao 266237, Peoples R China
2.City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Gu, Wenyan,Zhou, Aizhong,Wang, Lusheng,et al. SVLR: Genome Structural Variant Detection Using Long-Read Sequencing Data[J]. JOURNAL OF COMPUTATIONAL BIOLOGY,2021:15.
APA Gu, Wenyan,Zhou, Aizhong,Wang, Lusheng,Sun, Shiwei,Cui, Xuefeng,&Zhu, Daming.(2021).SVLR: Genome Structural Variant Detection Using Long-Read Sequencing Data.JOURNAL OF COMPUTATIONAL BIOLOGY,15.
MLA Gu, Wenyan,et al."SVLR: Genome Structural Variant Detection Using Long-Read Sequencing Data".JOURNAL OF COMPUTATIONAL BIOLOGY (2021):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gu, Wenyan]的文章
[Zhou, Aizhong]的文章
[Wang, Lusheng]的文章
百度学术
百度学术中相似的文章
[Gu, Wenyan]的文章
[Zhou, Aizhong]的文章
[Wang, Lusheng]的文章
必应学术
必应学术中相似的文章
[Gu, Wenyan]的文章
[Zhou, Aizhong]的文章
[Wang, Lusheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。