CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Cooperatively Improving Data Center Energy Efficiency Based on Multi-Agent Deep Reinforcement Learning
Chi, Ce1,2,5; Ji, Kaixuan1,2,5; Song, Penglei3; Marahatta, Avinab4; Zhang, Shikui3; Zhang, Fa1,5; Qiu, Dehui3; Liu, Zhiyong1,5
2021-04-01
发表期刊ENERGIES
卷号14期号:8页码:32
摘要The problem of high power consumption in data centers is becoming more and more prominent. In order to improve the energy efficiency of data centers, cooperatively optimizing the energy of IT systems and cooling systems has become an effective way. In this paper, a model-free deep reinforcement learning (DRL)-based joint optimization method MAD3C is developed to overcome the high-dimensional state and action space problems of the data center energy optimization. A hybrid AC-DDPG cooperative multi-agent framework is devised for the improvement of the cooperation between the IT and cooling systems for further energy efficiency improvement. In the framework, a scheduling baseline comparison method is presented to enhance the stability of the framework. Meanwhile, an adaptive score is designed for the architecture in consideration of multi-dimensional resources and resource utilization improvement. Experiments show that our proposed approach can effectively reduce energy for data centers through the cooperative optimization while guaranteeing training stability and improving resource utilization.
关键词data center energy efficiency deep reinforcement learning multi-agent scheduling algorithm cooling system
DOI10.3390/en14082071
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFB1010001] ; National Natural Science Foundation of China[61520106005] ; National Natural Science Foundation of China[61761136014]
WOS研究方向Energy & Fuels
WOS类目Energy & Fuels
WOS记录号WOS:000644128100001
出版者MDPI
引用统计
被引频次:17[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17828
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Zhiyong
作者单位1.Chinese Acad Sci, Inst Comp Technol, High Performance Comp Res Ctr, Beijing 100095, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
3.Capital Normal Univ, Informat Engn Coll, Beijing 100048, Peoples R China
4.Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China
5.6 South Kexueyuan Rd, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Chi, Ce,Ji, Kaixuan,Song, Penglei,et al. Cooperatively Improving Data Center Energy Efficiency Based on Multi-Agent Deep Reinforcement Learning[J]. ENERGIES,2021,14(8):32.
APA Chi, Ce.,Ji, Kaixuan.,Song, Penglei.,Marahatta, Avinab.,Zhang, Shikui.,...&Liu, Zhiyong.(2021).Cooperatively Improving Data Center Energy Efficiency Based on Multi-Agent Deep Reinforcement Learning.ENERGIES,14(8),32.
MLA Chi, Ce,et al."Cooperatively Improving Data Center Energy Efficiency Based on Multi-Agent Deep Reinforcement Learning".ENERGIES 14.8(2021):32.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chi, Ce]的文章
[Ji, Kaixuan]的文章
[Song, Penglei]的文章
百度学术
百度学术中相似的文章
[Chi, Ce]的文章
[Ji, Kaixuan]的文章
[Song, Penglei]的文章
必应学术
必应学术中相似的文章
[Chi, Ce]的文章
[Ji, Kaixuan]的文章
[Song, Penglei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。