CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A survey on deep geometry learning: From a representation perspective
Xiao, Yun-Peng1; Lai, Yu-Kun2; Zhang, Fang-Lue3; Li, Chunpeng1; Gao, Lin1
2020-06-01
发表期刊COMPUTATIONAL VISUAL MEDIA
ISSN2096-0433
卷号6期号:2页码:113-133
摘要Researchers have achieved great success in dealing with 2D images using deep learning. In recent years, 3D computer vision and geometry deep learning have gained ever more attention. Many advanced techniques for 3D shapes have been proposed for different applications. Unlike 2D images, which can be uniformly represented by a regular grid of pixels, 3D shapes have various representations, such as depth images, multi-view images, voxels, point clouds, meshes, implicit surfaces, etc. The performance achieved in different applications largely depends on the representation used, and there is no unique representation that works well for all applications. Therefore, in this survey, we review recent developments in deep learning for 3D geometry from a representation perspective, summarizing the advantages and disadvantages of different representations for different applications. We also present existing datasets in these representations and further discuss future research directions.
关键词3D shape representation geometry learning neural networks computer graphics
DOI10.1007/s41095-020-0174-8
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61828204] ; National Natural Science Foundation of China[61872440] ; Beijing Municipal Natural Science Foundation[L182016] ; Youth Innovation Promotion Association CAS ; CCF-Tencent Open Fund ; Royal Society-Newton Advanced Fellowship[NAF\R2\192151] ; Royal Society[IES\R1\180126]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000648691300001
出版者SPRINGERNATURE
引用统计
被引频次:70[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17773
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Lin
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Cardiff Univ, Sch Comp Sci & Informat, Cardiff, Wales
3.Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington, New Zealand
推荐引用方式
GB/T 7714
Xiao, Yun-Peng,Lai, Yu-Kun,Zhang, Fang-Lue,et al. A survey on deep geometry learning: From a representation perspective[J]. COMPUTATIONAL VISUAL MEDIA,2020,6(2):113-133.
APA Xiao, Yun-Peng,Lai, Yu-Kun,Zhang, Fang-Lue,Li, Chunpeng,&Gao, Lin.(2020).A survey on deep geometry learning: From a representation perspective.COMPUTATIONAL VISUAL MEDIA,6(2),113-133.
MLA Xiao, Yun-Peng,et al."A survey on deep geometry learning: From a representation perspective".COMPUTATIONAL VISUAL MEDIA 6.2(2020):113-133.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xiao, Yun-Peng]的文章
[Lai, Yu-Kun]的文章
[Zhang, Fang-Lue]的文章
百度学术
百度学术中相似的文章
[Xiao, Yun-Peng]的文章
[Lai, Yu-Kun]的文章
[Zhang, Fang-Lue]的文章
必应学术
必应学术中相似的文章
[Xiao, Yun-Peng]的文章
[Lai, Yu-Kun]的文章
[Zhang, Fang-Lue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。