Institute of Computing Technology, Chinese Academy IR
Integrating Scene Semantic Knowledge into Image Captioning | |
Wei, Haiyang1; Li, Zhixin1; Huang, Feicheng1; Zhang, Canlong1; Ma, Huifang2; Shi, Zhongzhi3 | |
2021-06-01 | |
发表期刊 | ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS |
ISSN | 1551-6857 |
卷号 | 17期号:2页码:22 |
摘要 | Most existing image captioning methods use only the visual information of the image to guide the generation of captions, lack the guidance of effective scene semantic information, and the current visual attention mechanism cannot adjust the focus intensity on the image. In this article, we first propose an improved visual attention model. At each timestep, we calculated the focus intensity coefficient of the attention mechanism through the context information of themodel, then automatically adjusted the focus intensity of the attention mechanism through the coefficient to extract more accurate visual information. In addition, we represented the scene semantic knowledge of the image through topic words related to the image scene, then added them to the language model. We used the attention mechanism to determine the visual information and scene semantic information that the model pays attention to at each timestep and combined them to enable the model to generate more accurate and scene-specific captions. Finally, we evaluated our model on Microsoft COCO (MSCOCO) and Flickr30k standard datasets. The experimental results show that our approach generates more accurate captions and outperforms many recent advanced models in various evaluation metrics. |
关键词 | Image captioning attention mechanism scene semantics encoder-decoder framework |
DOI | 10.1145/3439734 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61966004] ; National Natural Science Foundation of China[61663004] ; National Natural Science Foundation of China[61866004] ; National Natural Science Foundation of China[61762078] ; Guangxi Natural Science Foundation[2019GXNSFDA245018] ; Guangxi Natural Science Foundation[2018GXNSFDA281009] ; Guangxi Bagui Scholar Teams for Innovation and Research Project ; Guangxi Talent Highland Project of Big Data Intelligence and Application ; Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods |
WOS记录号 | WOS:000661037000017 |
出版者 | ASSOC COMPUTING MACHINERY |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/17625 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Li, Zhixin |
作者单位 | 1.Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, 15 Yucai Rd, Guilin 541004, Guangxi, Peoples R China 2.Northwest Normal Univ, Coll Comp Sci & Engn, 967 Anning East Rd, Lanzhou 730070, Gansu, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, 6 Kexueyuan South Rd, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Wei, Haiyang,Li, Zhixin,Huang, Feicheng,et al. Integrating Scene Semantic Knowledge into Image Captioning[J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,2021,17(2):22. |
APA | Wei, Haiyang,Li, Zhixin,Huang, Feicheng,Zhang, Canlong,Ma, Huifang,&Shi, Zhongzhi.(2021).Integrating Scene Semantic Knowledge into Image Captioning.ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,17(2),22. |
MLA | Wei, Haiyang,et al."Integrating Scene Semantic Knowledge into Image Captioning".ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 17.2(2021):22. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论