CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
PA-Net: Learning local features using by pose attention for short-term person re-identification
Wang, Kai1,2; Dong, Shichao1; Liu, Nian1; Yang, Junhui1; Li, Tao1,3; Hu, Qinghua4
2021-07-01
发表期刊INFORMATION SCIENCES
ISSN0020-0255
卷号565页码:196-209
摘要Person re-identification (Re-ID) is an important but challenging task in video surveillance applications. In Re-ID tasks, pose is an extremely useful cue to identify a person, even from the back view. Therefore, pose-detection models may learn the features that are beneficial to the Re-ID task and improve the Re-ID performance by fusing the feature maps into the Re-ID model. Two key problems in integrating the pose cues are addressed in this study. One is how to reduce the noise caused by cross-domain datasets. The other is how to fuse the feature maps to better utilize high-level semantic pose cues. To address these two key problems, we first propose PA-Net by combining the pose attention stream and the global attention stream, where the global attention stream distinguishes persons with different global appearances, and the pose attention stream distinguishes persons with similar global appearance but different poses. Then, we present a pose attention stream that learns local features to reduce the noise in the pose cues caused by the cross-domain datasets and provide more semantic information for the Re-ID task. The effects of the proposed pose attention are demonstrated in an ablation study, and comparative experiments show that PA-Net achieves state-of-the-art performance. (c) 2021 Elsevier Inc. All rights reserved.
关键词Person re-identification Pose attention Feature fusion Deep learning
DOI10.1016/j.ins.2021.02.066
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2018YFB2100304] ; National Natural Science Foundation of China[61872200] ; National Natural Science Foundation of China[62002175] ; National Natural Science Foundation of China[61925602] ; National Natural Science Foundation of China[61732011] ; Open Project Fund of State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences[CARCH201905] ; Natural Science Foundation of Tianjin[19JCZDJC31600] ; Natural Science Foundation of Tianjin[18YFYZCG00060] ; CERNET Innovation Project[NGII20190402]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000653661400012
出版者ELSEVIER SCIENCE INC
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17557
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Tao
作者单位1.Nankai Univ, Coll Comp Sci, Tianjin, Peoples R China
2.Key Lab Med Data Anal & Stat Res Tianjin, Tianjin, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing, Peoples R China
4.Tianjin Univ, Sch Artificial Intelligence, Tianjin, Peoples R China
推荐引用方式
GB/T 7714
Wang, Kai,Dong, Shichao,Liu, Nian,et al. PA-Net: Learning local features using by pose attention for short-term person re-identification[J]. INFORMATION SCIENCES,2021,565:196-209.
APA Wang, Kai,Dong, Shichao,Liu, Nian,Yang, Junhui,Li, Tao,&Hu, Qinghua.(2021).PA-Net: Learning local features using by pose attention for short-term person re-identification.INFORMATION SCIENCES,565,196-209.
MLA Wang, Kai,et al."PA-Net: Learning local features using by pose attention for short-term person re-identification".INFORMATION SCIENCES 565(2021):196-209.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Kai]的文章
[Dong, Shichao]的文章
[Liu, Nian]的文章
百度学术
百度学术中相似的文章
[Wang, Kai]的文章
[Dong, Shichao]的文章
[Liu, Nian]的文章
必应学术
必应学术中相似的文章
[Wang, Kai]的文章
[Dong, Shichao]的文章
[Liu, Nian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。