CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
OCNet: Object Context for Semantic Segmentation
Yuan, Yuhui1,3,4; Huang, Lang2; Guo, Jianyuan2; Zhang, Chao2; Chen, Xilin3,4; Wang, Jingdong1
2021-05-24
发表期刊INTERNATIONAL JOURNAL OF COMPUTER VISION
ISSN0920-5691
页码24
摘要In this paper, we address the semantic segmentation task with a new context aggregation scheme named object context, which focuses on enhancing the role of object information. Motivated by the fact that the category of each pixel is inherited from the object it belongs to, we define the object context for each pixel as the set of pixels that belong to the same category as the given pixel in the image. We use a binary relation matrix to represent the relationship between all pixels, where the value one indicates the two selected pixels belong to the same category and zero otherwise. We propose to use a dense relation matrix to serve as a surrogate for the binary relation matrix. The dense relation matrix is capable to emphasize the contribution of object information as the relation scores tend to be larger on the object pixels than the other pixels. Considering that the dense relation matrix estimation requires quadratic computation overhead and memory consumption w.r.t. the input size, we propose an efficient interlaced sparse self-attention scheme to model the dense relations between any two of all pixels via the combination of two sparse relation matrices. To capture richer context information, we further combine our interlaced sparse self-attention scheme with the conventional multi-scale context schemes including pyramid pooling (Zhao et al. 2017) and atrous spatial pyramid pooling (Chen et al. 2018). We empirically show the advantages of our approach with competitive performances on five challenging benchmarks including: Cityscapes, ADE20K, LIP, PASCAL-Context and COCO-Stuff.
关键词Semantic segmentation Context Self-attention
DOI10.1007/s11263-021-01465-9
收录类别SCI
语种英语
资助项目National Nature Science Foundation of China[62071013] ; National Nature Science Foundation of China[61671027] ; National Key R&D Program of China[2018AAA0100300]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000653602100003
出版者SPRINGER
引用统计
被引频次:149[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17549
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yuan, Yuhui
作者单位1.Microsoft Res Asia, Beijing, Peoples R China
2.Peking Univ, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
4.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Yuan, Yuhui,Huang, Lang,Guo, Jianyuan,et al. OCNet: Object Context for Semantic Segmentation[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2021:24.
APA Yuan, Yuhui,Huang, Lang,Guo, Jianyuan,Zhang, Chao,Chen, Xilin,&Wang, Jingdong.(2021).OCNet: Object Context for Semantic Segmentation.INTERNATIONAL JOURNAL OF COMPUTER VISION,24.
MLA Yuan, Yuhui,et al."OCNet: Object Context for Semantic Segmentation".INTERNATIONAL JOURNAL OF COMPUTER VISION (2021):24.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yuan, Yuhui]的文章
[Huang, Lang]的文章
[Guo, Jianyuan]的文章
百度学术
百度学术中相似的文章
[Yuan, Yuhui]的文章
[Huang, Lang]的文章
[Guo, Jianyuan]的文章
必应学术
必应学术中相似的文章
[Yuan, Yuhui]的文章
[Huang, Lang]的文章
[Guo, Jianyuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。