CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer
Zhou, Bo1; Zhou, S. Kevin2; Duncan, James S.1,3; Liu, Chi1,3
2021-07-01
发表期刊IEEE TRANSACTIONS ON MEDICAL IMAGING
ISSN0278-0062
卷号40期号:7页码:1792-1804
摘要Limited view tomographic reconstruction aims to reconstruct a tomographic image from a limited number of projection views arising from sparse view or limited angle acquisitions that reduce radiation dose or shorten scanning time. However, such a reconstruction suffers from severe artifacts due to the incompleteness of sinogram. To derive quality reconstruction, previous methods use UNet-like neural architectures to directly predict the full view reconstruction from limited view data; but these methods leave the deep network architecture issue largely intact and cannot guarantee the consistency between the sinogram of the reconstructed image and the acquired sinogram, leading to a non-ideal reconstruction. In this work, we propose a cascaded residual dense spatial-channel attention network consisting of residual dense spatial-channel attention networks and projection data fidelity layers. We evaluate our methods on two datasets. Our experimental results on AAPM Low Dose CT Grand Challenge datasets demonstrate that our algorithm achieves a consistent and substantial improvement over the existing neural network methods on both limited angle reconstruction and sparse view reconstruction. In addition, our experimental results on Deep Lesion datasets demonstrate that our method is able to generate high-quality reconstruction for 8 major lesion types.
关键词Tomographic reconstruction cascaded network projection data fidelity layer RedSCAN limited angle sparse view
DOI10.1109/TMI.2021.3066318
收录类别SCI
语种英语
资助项目National Institutes of Health (NIH)[R01EB025468] ; Biomedical Engineering Ph.D. fellowship from Yale University
WOS研究方向Computer Science ; Engineering ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000668842500005
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:37[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17519
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhou, Bo; Liu, Chi
作者单位1.Yale Univ, Dept Biomed Engn, New Haven, CT 06511 USA
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Yale Univ, Dept Radiol & Biomed Imaging, New Haven, CT 06511 USA
推荐引用方式
GB/T 7714
Zhou, Bo,Zhou, S. Kevin,Duncan, James S.,et al. Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer[J]. IEEE TRANSACTIONS ON MEDICAL IMAGING,2021,40(7):1792-1804.
APA Zhou, Bo,Zhou, S. Kevin,Duncan, James S.,&Liu, Chi.(2021).Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer.IEEE TRANSACTIONS ON MEDICAL IMAGING,40(7),1792-1804.
MLA Zhou, Bo,et al."Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer".IEEE TRANSACTIONS ON MEDICAL IMAGING 40.7(2021):1792-1804.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Bo]的文章
[Zhou, S. Kevin]的文章
[Duncan, James S.]的文章
百度学术
百度学术中相似的文章
[Zhou, Bo]的文章
[Zhou, S. Kevin]的文章
[Duncan, James S.]的文章
必应学术
必应学术中相似的文章
[Zhou, Bo]的文章
[Zhou, S. Kevin]的文章
[Duncan, James S.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。