CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning Feature Representation and Partial Correlation for Multimodal Multi-Label Data
Song, Guoli1; Wang, Shuhui2; Huang, Qingming1,2,3; Tian, Qi4
2021
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
ISSN1520-9210
卷号23页码:1882-1894
摘要User-provided annotations in existing multimodal datasets sometimes are inappropriate for model learning and can hinder the task of cross-modal retrieval. To handle this issue, we propose a discriminative and noise-robust cross-modal retrieval method, called FLPCL, which consists of deep feature learning and partial correlation learning. Deep feature learning is implemented by utilizing label supervised information to guide the training of deep neural network for each modality, which aims to find modality-specific deep feature representations that preserve the similarity and discrimination information among multimodal data. Based on deep feature learning, partial correlation learning is proposed to infer direct association between different modalities by removing the effect of common underlying semantics from each modality. It is achieved by maximizing the canonical correlation of the feature representations of different modalities conditioned on the label modality. Different from existing works that build indirect association between modalities via incorporating semantic labels, our FLPCL method can learn more effective and robust multimodal latent representations by explicitly preserving both intra-modal and inter-modal relationship among multimodal data. Extensive experiments on three cross-modal datasets show that our method outperforms state-of-the-art methods on cross-modal retrieval tasks.
关键词Semantics Correlation Task analysis Data models Learning systems Kernel Deep learning Cross-modal retrieval correlation learning feature learning partial correlation
DOI10.1109/TMM.2020.3004963
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2018AAA0102003] ; National Natural Science Foundation of China[61672497] ; National Natural Science Foundation of China[61836002] ; National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61931008] ; Key Research Program of Frontier Sciences of CAS[QYZDJ-SSW-SYS013]
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:000668875100005
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:9[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17514
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Shuhui
作者单位1.Peng Cheng Lab, Shenzhen, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
4.Huawei, Cloud BU, Shenzhen 518129, Peoples R China
推荐引用方式
GB/T 7714
Song, Guoli,Wang, Shuhui,Huang, Qingming,et al. Learning Feature Representation and Partial Correlation for Multimodal Multi-Label Data[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2021,23:1882-1894.
APA Song, Guoli,Wang, Shuhui,Huang, Qingming,&Tian, Qi.(2021).Learning Feature Representation and Partial Correlation for Multimodal Multi-Label Data.IEEE TRANSACTIONS ON MULTIMEDIA,23,1882-1894.
MLA Song, Guoli,et al."Learning Feature Representation and Partial Correlation for Multimodal Multi-Label Data".IEEE TRANSACTIONS ON MULTIMEDIA 23(2021):1882-1894.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Guoli]的文章
[Wang, Shuhui]的文章
[Huang, Qingming]的文章
百度学术
百度学术中相似的文章
[Song, Guoli]的文章
[Wang, Shuhui]的文章
[Huang, Qingming]的文章
必应学术
必应学术中相似的文章
[Song, Guoli]的文章
[Wang, Shuhui]的文章
[Huang, Qingming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。