CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Pattern-Based SpGEMM Library for Multi-Core and Many-Core Architectures
Xie, Zhen1,2; Tan, Guangming1,2; Liu, Weifeng3; Sun, Ninghui1,2
2022
发表期刊IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
ISSN1045-9219
卷号33期号:1页码:159-175
摘要General sparse matrix-matrix multiplication (SpGEMM) is one of the most important mathematical library routines in a number of applications. In recent years, several efficient SpGEMM algorithms have been proposed, however, most of them are based on the compressed sparse row (CSR) format, and the possible performance gain from exploiting other formats has not been well studied. And some specific algorithms are restricted to parameter tuning that has a significant impact on performance. So the particular format, algorithm, and parameter that yield the best performance for SpGEMM remain undetermined. In this article, we conduct a prospective study on format-specific parallel SpGEMM algorithms and analyze their pros and cons. We then propose a pattern-based SpGEMM library, that provides a unified programming interface in the CSR format, analyses the pattern of two input matrices, and automatically determines the best format, algorithm, and parameter for arbitrary matrix pairs. For this purpose, we build an algorithm set that integrates three new designed algorithms with existing popular libraries, and design a hybrid deep learning model called MatNet to quickly identify patterns of input matrices and accurately predict the best solution by using sparse features and density representations. The evaluation shows that this library consistently outperforms the state-of-the-art library. We also demonstrate its adaptability in an AMG solver and a BFS algorithm with 30 percent performance improvement.
关键词Libraries Sparse matrices Prediction algorithms Neural networks Predictive models Memory management Tuners SpGEMM spare BLAS sparse format auto-tuning neural network
DOI10.1109/TPDS.2021.3090328
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFB0202105] ; National Key Research and Development Program of China[2016YFB0201305] ; National Key Research and Development Program of China[2016YFB0200803] ; National Key Research and Development Program of China[2016YFB0200300] ; National Natural Science Foundation of China[61521092] ; National Natural Science Foundation of China[91430218] ; National Natural Science Foundation of China[31327901] ; National Natural Science Foundation of China[61472395] ; National Natural Science Foundation of China[61432018] ; National Natural Science Foundation of China[61671151]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000673452600001
出版者IEEE COMPUTER SOC
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17500
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xie, Zhen
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100864, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100864, Peoples R China
3.China Univ Petr, Dept Comp Sci & Technol, Beijing 102249, Peoples R China
推荐引用方式
GB/T 7714
Xie, Zhen,Tan, Guangming,Liu, Weifeng,et al. A Pattern-Based SpGEMM Library for Multi-Core and Many-Core Architectures[J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,2022,33(1):159-175.
APA Xie, Zhen,Tan, Guangming,Liu, Weifeng,&Sun, Ninghui.(2022).A Pattern-Based SpGEMM Library for Multi-Core and Many-Core Architectures.IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,33(1),159-175.
MLA Xie, Zhen,et al."A Pattern-Based SpGEMM Library for Multi-Core and Many-Core Architectures".IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 33.1(2022):159-175.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xie, Zhen]的文章
[Tan, Guangming]的文章
[Liu, Weifeng]的文章
百度学术
百度学术中相似的文章
[Xie, Zhen]的文章
[Tan, Guangming]的文章
[Liu, Weifeng]的文章
必应学术
必应学术中相似的文章
[Xie, Zhen]的文章
[Tan, Guangming]的文章
[Liu, Weifeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。