CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Geographic Optimal Transport for Heterogeneous Data: Fusing Remote Sensing and Social Media
Liu, Zhenjie1; Qiu, Qiang2; Li, Jun1; Wang, Lizhe3; Plaza, Antonio4
2021-08-01
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN0196-2892
卷号59期号:8页码:6935-6945
摘要The fusion of heterogeneous remote sensing and social media data can fill the gaps in satellite image collections and improve the spatiotemporal resolution of the available data sets. As a result, it is being gradually adopted in multimodal data analytics. Generally, the fusion of heterogeneous geographic data faces the following issues: 1) the probability density functions may differ from different data sources and 2) the geolocations may not be well aligned. The former one can be generally solved by performing an alignment of representations in the source and target domains using, for instance, domain adaptation. The latter issue is seldom considered in the fusion of heterogeneous geographic data. In this article, we present a new method called geographic optimal transport (GOT), which aims at aligning representations and geolocations in a simultaneous fashion. A flood event that took place in 2013 in Boulder, CO, USA, is taken as a case study to evaluate our GOT method. Here, we consider two remote sensing features derived from water indicators, i.e., the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), for the fusion of Landsat 8 imagery and Twitter data. A comparison between our newly developed GOT and the traditional optimal transport (OT) is performed. Experimental results demonstrate that the proposed GOT can accurately align spatially biased georeferenced tweets to the flood phenomena, leading to the conclusion that GOT can effectively fuse heterogeneous remote sensing and social media data.
关键词Remote sensing Geology Social networking (online) Earth Artificial satellites Satellites Indexes Data fusion geolocation alignment remote sensing representation alignment social media
DOI10.1109/TGRS.2020.3031337
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of the Chinese Academy of Sciences[XDA19090104]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000675402300055
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17306
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Jun
作者单位1.Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Prov Key Lab Urbanizat & Geosimulat, Guangzhou 510275, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
4.Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10071, Spain
推荐引用方式
GB/T 7714
Liu, Zhenjie,Qiu, Qiang,Li, Jun,et al. Geographic Optimal Transport for Heterogeneous Data: Fusing Remote Sensing and Social Media[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2021,59(8):6935-6945.
APA Liu, Zhenjie,Qiu, Qiang,Li, Jun,Wang, Lizhe,&Plaza, Antonio.(2021).Geographic Optimal Transport for Heterogeneous Data: Fusing Remote Sensing and Social Media.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,59(8),6935-6945.
MLA Liu, Zhenjie,et al."Geographic Optimal Transport for Heterogeneous Data: Fusing Remote Sensing and Social Media".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 59.8(2021):6935-6945.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Zhenjie]的文章
[Qiu, Qiang]的文章
[Li, Jun]的文章
百度学术
百度学术中相似的文章
[Liu, Zhenjie]的文章
[Qiu, Qiang]的文章
[Li, Jun]的文章
必应学术
必应学术中相似的文章
[Liu, Zhenjie]的文章
[Qiu, Qiang]的文章
[Li, Jun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。