CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Semi-supervised anomaly detection in dynamic communication networks
Meng, Xuying1,2; Wang, Suhang3; Liang, Zhimin1; Yao, Di1; Zhou, Jihua4; Zhang, Yujun1
2021-09-01
发表期刊INFORMATION SCIENCES
ISSN0020-0255
卷号571页码:527-542
摘要To ensure the security and stabilization of the communication networks, anomaly detection is the first line of defense. However, their learning process suffers two major issues: (1) inadequate labels: there are many different kinds of attacks but rare abnormal nodes in mt of these atstacks; and (2) inaccurate labels: considering the heavy network flows and new emerging attacks, providing accurate labels for all nodes is very expensive. The inadequate and inaccurate label problem challenges many existing methods because the majority normal nodes result in a biased classifier while the noisy labels will further degrade the performance of the classifier. To tackle these issues, we propose SemiADC, a Semi-supervised Anomaly Detection framework for dynamic Communication networks. SemiADC first approximately learns the feature distribution of normal nodes with regularization from abnormal ones. It then cleans the datasets and extracts the nodes sasainaccurate labels by the learned feature distribution and structure-based temporal correlations. These self-learning processes run iteratively with mutual promotion, and finally help increase the accuracy of anomaly detection. Experimental evaluations on real-world data sets demonstrate the effectiveness of our SemiADC, which performs substantially better than the state-of-art anomaly detection approaches without the demand of adequate and accurate supervision. (c) 2021 Published by Elsevier Inc.
关键词Anomaly detection Semi-supervised learning Generative adversarial networks Self-learning
DOI10.1016/j.ins.2021.04.056
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2018YFB1800403] ; National Science Foundation of China[61902382] ; National Science Foundation of China[61972381] ; National Science Foundation of China[61672500] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDC02030500] ; research program of Network Computing Innovation Research Institute[E061010003]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000683548900009
出版者ELSEVIER SCIENCE INC
引用统计
被引频次:20[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17232
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Yujun
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Purple Mt Labs, Nanjing, Peoples R China
3.Penn State Univ, Coll Informat Sci & Technol, State Coll, PA USA
4.Jin Mei Commun, Chogqing, Peoples R China
推荐引用方式
GB/T 7714
Meng, Xuying,Wang, Suhang,Liang, Zhimin,et al. Semi-supervised anomaly detection in dynamic communication networks[J]. INFORMATION SCIENCES,2021,571:527-542.
APA Meng, Xuying,Wang, Suhang,Liang, Zhimin,Yao, Di,Zhou, Jihua,&Zhang, Yujun.(2021).Semi-supervised anomaly detection in dynamic communication networks.INFORMATION SCIENCES,571,527-542.
MLA Meng, Xuying,et al."Semi-supervised anomaly detection in dynamic communication networks".INFORMATION SCIENCES 571(2021):527-542.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Meng, Xuying]的文章
[Wang, Suhang]的文章
[Liang, Zhimin]的文章
百度学术
百度学术中相似的文章
[Meng, Xuying]的文章
[Wang, Suhang]的文章
[Liang, Zhimin]的文章
必应学术
必应学术中相似的文章
[Meng, Xuying]的文章
[Wang, Suhang]的文章
[Liang, Zhimin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。