CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Estimating the Resource Demand in Power-Aware Clusters by Regressing a Linearly Dependent Relation
Hu, Cheng1,2; Deng, Yuhui1,3; Yang, Laurence T.4; Zhao, Yufan1
2021-07-01
发表期刊IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING
ISSN2377-3782
卷号6期号:3页码:385-397
摘要Large-scale clusters are often built with over-provisioned service resources, so as to satisfy the huge demand raised by enormous users in cloud environments. By estimating the resource demand of workloads, an on-demand resource provisioning method can be realized in these clusters, thus improving the energy efficiency. However, to guarantee Quality of Service (QoS), the resource demand of workload should be accurately estimated so as to provide suitable resources. Many statistical approaches estimate actual resource demand based on some workload features. But the relations between actual resource demand and workload features are generally obscure, and it's a big challenge to gain an accurate estimation under an obscure relation. In this paper, by considering a cluster as a queueing system, we construct a linearly dependent relation between resource demand and multiple feature combinations. The linearly dependent relation is inconstant due to its variable coefficients. Then, to ascertain specific relations which match actual situations, we design a Basic Linear regression (BL) algorithm. BL can obtain the optimal values for these coefficients, thus determining the inconstant relation to specific ones. Finally, we propose a Constructed Linear regression (CL) approach to estimate actual resource demands. CL forms a two-layer neural network by using several processes of BL as the neurons. To evaluate CL, we realize an On-Demand Resource Provisioning (ODRP) method in a typical power-aware cluster. Several evaluation metrics are proposed for conducting extensive experiments. The experimental results show that CL is effective to make accurate estimations.
关键词Estimation Servers Linear regression Quality of service Computational modeling Analytical models Task analysis Resource demand estimation linear regression power-aware cluster QoS SLA
DOI10.1109/TSUSC.2019.2894708
收录类别SCI
语种英语
资助项目NSFC[61572232] ; Science and Technology Planning Project of Guangzhou[201802010028] ; Science and Technology Planning Project of Guangzhou[201802010060] ; Science and Technology Planning Project of Nansha[2017CX006] ; Open Research Fund of Key Laboratory of Computer System and Architecture, Institute of Computing Technology, Chinese Academy of Sciences[CARCH201705]
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Information Systems ; Telecommunications
WOS记录号WOS:000695943900003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17182
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Deng, Yuhui
作者单位1.Jinan Univ, Dept Comp Sci, Guangzhou 510632, Peoples R China
2.Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Guangzhou 510006, Peoples R China
3.Chinese Acad Sci, Inst Comp, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
4.Sci St Francis Xavier Univ, Dept Comp Sci, Antigonish, NS B2G 2W5, Canada
推荐引用方式
GB/T 7714
Hu, Cheng,Deng, Yuhui,Yang, Laurence T.,et al. Estimating the Resource Demand in Power-Aware Clusters by Regressing a Linearly Dependent Relation[J]. IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING,2021,6(3):385-397.
APA Hu, Cheng,Deng, Yuhui,Yang, Laurence T.,&Zhao, Yufan.(2021).Estimating the Resource Demand in Power-Aware Clusters by Regressing a Linearly Dependent Relation.IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING,6(3),385-397.
MLA Hu, Cheng,et al."Estimating the Resource Demand in Power-Aware Clusters by Regressing a Linearly Dependent Relation".IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 6.3(2021):385-397.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Cheng]的文章
[Deng, Yuhui]的文章
[Yang, Laurence T.]的文章
百度学术
百度学术中相似的文章
[Hu, Cheng]的文章
[Deng, Yuhui]的文章
[Yang, Laurence T.]的文章
必应学术
必应学术中相似的文章
[Hu, Cheng]的文章
[Deng, Yuhui]的文章
[Yang, Laurence T.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。