CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Particle Filter Reinforcement via Context-Sensing for Smartphone-Based Pedestrian Dead Reckoning
Shao, Wenhua1,2; Zhao, Fang1; Luo, Haiyong3,4; Tian, Hui2; Li, Jiaxin1; Crivello, Antonino5
2021-09-01
发表期刊IEEE COMMUNICATIONS LETTERS
ISSN1089-7798
卷号25期号:9页码:3144-3148
摘要Pedestrian dead reckoning based on particle filter is commonly used for enabling seamless smartphone-based indoor positioning. However, compass directions indoor are heavily distorted due to the presence of ferromagnetic materials. Conventional particle filters convert the raw compass direction to a distribution adding a constant variance noise and leveraging a particle swarm to simulate the distribution. Finally, the selection of eligible directions is performed applying external constraints mainly imposed from the indoor map. However, the choice of a constant parameter decreases the positioning performances because the variance of nearby context, including topography, ferromagnetic materials, and particle distribution, is not represented. Therefore, we propose the particle filter reinforcement able to adaptively learn and adjust the variance of the direction observing the context in real-time. Experiments in real-world scenarios show that the proposed method improves the positioning accuracy by more than 20% at the 80% probability compared with state-of-the-art methods.
关键词Particle filters Neural networks Reinforcement learning Mathematical model Particle measurements Estimation Atmospheric measurements Indoor location tracking particle filter pedestrian dead reckoning reinforcement learning smartphone-based navigation
DOI10.1109/LCOMM.2021.3090300
收录类别SCI
语种英语
资助项目Joint Research Fund for Beijing Natural Science Foundation ; Haidian Original Innovation[L192004] ; National Natural Science Foundation of China[61872046] ; Beijing Natural Science Foundation[4212024] ; Action Plan Project of the Beijing University of Posts and Telecommunications ; Fundamental Research Funds for the Central Universities[2019XD-A06] ; Hebei Province[19210404D] ; Science and Technology Plan Project of Inner Mongolia Autonomous Regio[2019GG328]
WOS研究方向Telecommunications
WOS类目Telecommunications
WOS记录号WOS:000694697800079
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17174
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Luo, Haiyong
作者单位1.Beijing Univ Posts & Telecommun, Sch Comp Sci, Natl Pilot Software Engn Sch, Beijing 100876, Peoples R China
2.Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100876, Peoples R China
4.Chinese Acad Sci, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100876, Peoples R China
5.Natl Res Council CNR, Inst Informat Sci & Technol, I-56124 Pisa, Italy
推荐引用方式
GB/T 7714
Shao, Wenhua,Zhao, Fang,Luo, Haiyong,et al. Particle Filter Reinforcement via Context-Sensing for Smartphone-Based Pedestrian Dead Reckoning[J]. IEEE COMMUNICATIONS LETTERS,2021,25(9):3144-3148.
APA Shao, Wenhua,Zhao, Fang,Luo, Haiyong,Tian, Hui,Li, Jiaxin,&Crivello, Antonino.(2021).Particle Filter Reinforcement via Context-Sensing for Smartphone-Based Pedestrian Dead Reckoning.IEEE COMMUNICATIONS LETTERS,25(9),3144-3148.
MLA Shao, Wenhua,et al."Particle Filter Reinforcement via Context-Sensing for Smartphone-Based Pedestrian Dead Reckoning".IEEE COMMUNICATIONS LETTERS 25.9(2021):3144-3148.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shao, Wenhua]的文章
[Zhao, Fang]的文章
[Luo, Haiyong]的文章
百度学术
百度学术中相似的文章
[Shao, Wenhua]的文章
[Zhao, Fang]的文章
[Luo, Haiyong]的文章
必应学术
必应学术中相似的文章
[Shao, Wenhua]的文章
[Zhao, Fang]的文章
[Luo, Haiyong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。