CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Machine-learning-based cache partition method in cloud environment
Qiu, Jiefan1; Hua, Zonghan1; Liu, Lei2; Cao, Mingsheng3; Chen, Dajiang3,4
2021-09-06
发表期刊PEER-TO-PEER NETWORKING AND APPLICATIONS
ISSN1936-6442
页码14
摘要In the modern cloud environment, considering the cost of hardware and software resources, applications are often co-located on a platform and share such resources. However, co-located execution and resource sharing bring memory access conflict, especially in the Last Level Cache (LLC). In this paper, a lightweight method is proposed for partition LLC named by Classification-and-Allocation (C&A). Specifically, Support Vector Machine (SVM) is used in the proposed method to classify applications into the triple classes based on the performance change characteristic (PCC), and the Bayesian Optimizer (BO) is leveraged to schedule LLC to guarantee applications with the same PCC sharing the same part of LLC. Since the near-optimal partition can be found efficiently by leveraging BO-based scheduling with a few sampling steps, C&A can handle unseen and versatile workloads with low overhead. We evaluate the proposed method in several workloads. Experimental results show that C&A can outperform the state-of-art method KPart (El-Sayed et al in Proceedings of 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA) 104-117, 2018) by 7.45% and 22.50% respectively in overall system throughput and fairness, and reduces 20.60% allocation overhead.
关键词Cloud Cache Partition Last Level Cache Machine Learning
DOI10.1007/s12083-021-01235-x
收录类别SCI
语种英语
资助项目National Key Research and Development Project[2018YFB1402800] ; Zhejiang Provincial Natural Science Foundation of China[LY20F020026] ; project The Verification Platform of Multi-tier Coverage Communication Network for oceans[LZC0020] ; NSFC[61872059]
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Telecommunications
WOS记录号WOS:000692983300001
出版者SPRINGER
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17162
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chen, Dajiang
作者单位1.Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing, Peoples R China
3.Univ Elect Sci & Technol China, Network & Data Secur Key Lab Sichuan Prov, Chengdu 611731, Peoples R China
4.Peng Cheng Lab, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Qiu, Jiefan,Hua, Zonghan,Liu, Lei,et al. Machine-learning-based cache partition method in cloud environment[J]. PEER-TO-PEER NETWORKING AND APPLICATIONS,2021:14.
APA Qiu, Jiefan,Hua, Zonghan,Liu, Lei,Cao, Mingsheng,&Chen, Dajiang.(2021).Machine-learning-based cache partition method in cloud environment.PEER-TO-PEER NETWORKING AND APPLICATIONS,14.
MLA Qiu, Jiefan,et al."Machine-learning-based cache partition method in cloud environment".PEER-TO-PEER NETWORKING AND APPLICATIONS (2021):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qiu, Jiefan]的文章
[Hua, Zonghan]的文章
[Liu, Lei]的文章
百度学术
百度学术中相似的文章
[Qiu, Jiefan]的文章
[Hua, Zonghan]的文章
[Liu, Lei]的文章
必应学术
必应学术中相似的文章
[Qiu, Jiefan]的文章
[Hua, Zonghan]的文章
[Liu, Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。