CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
SCOAT-Net: A novel network for segmenting COVID-19 lung opacification from CT images
Zhao, Shixuan1; Li, Zhidan1; Chen, Yang2; Zhao, Wei3; Xie, Xingzhi3; Liu, Jun3,4; Zhao, Di5; Li, Yongjie1
2021-11-01
发表期刊PATTERN RECOGNITION
ISSN0031-3203
卷号119页码:12
摘要Automatic segmentation of lung opacification from computed tomography (CT) images shows excellent potential for quickly and accurately quantifying the infection of Coronavirus disease 2019 (COVID-19) and judging the disease development and treatment response. However, some challenges still exist, including the complexity and variability features of the opacity regions, the small difference between the infected and healthy tissues, and the noise of CT images. Due to limited medical resources, it is impractical to obtain a large amount of data in a short time, which further hinders the training of deep learning models. To answer these challenges, we proposed a novel spatial-and channel-wise coarse-to-fine attention network (SCOAT-Net), inspired by the biological vision mechanism, for the segmentation of COVID-19 lung opacification from CT images. With the UNet++ as basic structure, our SCOAT-Net introduces the specially designed spatial-wise and channel-wise attention modules, which serve to collaboratively boost the attention learning of the network and extract the efficient features of the infected opacification regions at the pixel and channel levels. Experiments show that our proposed SCOAT-Net achieves better results compared to several state-of-the-art image segmentation networks and has acceptable generalization ability. (c) 2021 Elsevier Ltd. All rights reserved.
关键词COVID-19 Convolutional neural network Segmentation Lung opacification Attention mechanism
DOI10.1016/j.patcog.2021.108109
收录类别SCI
语种英语
资助项目Key Area R&D Program of Guangdong province[2018B03033801] ; National Key Research and Development Project[2018ZX10723203-001-002] ; Key Emergency Project of Pneumonia Epidemic of novel coronavirus infection[2020SK3006] ; Emergency Project of Prevention and Control for COVID-19 of Central South University[160260005] ; Changsha Scientific and Technical bureau, China[kq2001001]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000687338900005
出版者ELSEVIER SCI LTD
引用统计
被引频次:33[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17129
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Jun; Zhao, Di; Li, Yongjie
作者单位1.Univ Elect Sci & Technol China, Sch Life Sci & Technol, MOE Key Lab Neuroinformat, Chengdu, Peoples R China
2.Sichuan Univ, West China Hosp, West China Biomed Big Data Ctr, Chengdu, Peoples R China
3.Cent South Univ, Xiangya Hosp 2, Dept Radiol, 139 Middle Renmin Rd, Changsha, Hunan, Peoples R China
4.Qual Control Ctr, Dept Radiol, Changsha, Hunan, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Shixuan,Li, Zhidan,Chen, Yang,et al. SCOAT-Net: A novel network for segmenting COVID-19 lung opacification from CT images[J]. PATTERN RECOGNITION,2021,119:12.
APA Zhao, Shixuan.,Li, Zhidan.,Chen, Yang.,Zhao, Wei.,Xie, Xingzhi.,...&Li, Yongjie.(2021).SCOAT-Net: A novel network for segmenting COVID-19 lung opacification from CT images.PATTERN RECOGNITION,119,12.
MLA Zhao, Shixuan,et al."SCOAT-Net: A novel network for segmenting COVID-19 lung opacification from CT images".PATTERN RECOGNITION 119(2021):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Shixuan]的文章
[Li, Zhidan]的文章
[Chen, Yang]的文章
百度学术
百度学术中相似的文章
[Zhao, Shixuan]的文章
[Li, Zhidan]的文章
[Chen, Yang]的文章
必应学术
必应学术中相似的文章
[Zhao, Shixuan]的文章
[Li, Zhidan]的文章
[Chen, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。