CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Follow the perturbed approximate leader for solving semi-bandit combinatorial optimization
Yang, Feidiao1,2; Chen, Wei3; Zhang, Jialin1,2; Sun, Xiaoming1,2
2021-10-01
发表期刊FRONTIERS OF COMPUTER SCIENCE
ISSN2095-2228
卷号15期号:5页码:12
摘要Combinatorial optimization in the face of uncertainty is a challenge in both operational research and machine learning. In this paper, we consider a special and important class called the adversarial online combinatorial optimization with semi-bandit feedback, in which a player makes combinatorial decisions and gets the corresponding feedback repeatedly. While existing algorithms focus on the regret guarantee or assume there exists an efficient offline oracle, it is still a challenge to solve this problem efficiently if the offline counterpart is NP-hard. In this paper, we propose a variant of the Follow-the-Perturbed-Leader (FPL) algorithm to solve this problem. Unlike the existing FPL approach, our method employs an approximation algorithm as an offline oracle and perturbs the collected data by adding nonnegative random variables. Our approach is simple and computationally efficient. Moreover, it can guarantee a sublinear (1 + epsilon)-scaled regret of order O(T23) for any small epsilon v> 0 for an important class of combinatorial optimization problems that admit an FPTAS (fully polynomial time approximation scheme), in which T is the number of rounds of the learning process. In addition to the theoretical analysis, we also conduct a series of experiments to demonstrate the performance of our algorithm.
关键词online learning online combinatorial optimization semi-bandit follow-the-perturbed-leader
DOI10.1007/s11704-020-9519-9
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61832003] ; National Natural Science Foundation of China[61761136014] ; National Natural Science Foundation of China[61872334] ; 973 Program of China[2016YFB1000201] ; K.C.Wong Education Foundation
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:000688411700001
出版者HIGHER EDUCATION PRESS
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17121
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Sun, Xiaoming
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.Microsoft Res Asia, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Yang, Feidiao,Chen, Wei,Zhang, Jialin,et al. Follow the perturbed approximate leader for solving semi-bandit combinatorial optimization[J]. FRONTIERS OF COMPUTER SCIENCE,2021,15(5):12.
APA Yang, Feidiao,Chen, Wei,Zhang, Jialin,&Sun, Xiaoming.(2021).Follow the perturbed approximate leader for solving semi-bandit combinatorial optimization.FRONTIERS OF COMPUTER SCIENCE,15(5),12.
MLA Yang, Feidiao,et al."Follow the perturbed approximate leader for solving semi-bandit combinatorial optimization".FRONTIERS OF COMPUTER SCIENCE 15.5(2021):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Feidiao]的文章
[Chen, Wei]的文章
[Zhang, Jialin]的文章
百度学术
百度学术中相似的文章
[Yang, Feidiao]的文章
[Chen, Wei]的文章
[Zhang, Jialin]的文章
必应学术
必应学术中相似的文章
[Yang, Feidiao]的文章
[Chen, Wei]的文章
[Zhang, Jialin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。