Institute of Computing Technology, Chinese Academy IR
Exploiting the Community Structure of Fraudulent Keywords for Fraud Detection in Web Search | |
Yang, Dong-Hui1,2; Li, Zhen-Yu1,2; Wang, Xiao-Hui3; Salamatian, Kave4; Xie, Gao-Gang2,5 | |
2021-10-01 | |
发表期刊 | JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY |
ISSN | 1000-9000 |
卷号 | 36期号:5页码:1167-1183 |
摘要 | Internet users heavily rely on web search engines for their intended information. The major revenue of search engines is advertisements (or ads). However, the search advertising suffers from fraud. Fraudsters generate fake traffic which does not reach the intended audience, and increases the cost of the advertisers. Therefore, it is critical to detect fraud in web search. Previous studies solve this problem through fraudster detection (especially bots) by leveraging fraudsters' unique behaviors. However, they may fail to detect new means of fraud, such as crowdsourcing fraud, since crowd workers behave in part like normal users. To this end, this paper proposes an approach to detecting fraud in web search from the perspective of fraudulent keywords. We begin by using a unique dataset of 150 million web search logs to examine the discriminating features of fraudulent keywords. Specifically, we model the temporal correlation of fraudulent keywords as a graph, which reveals a very well-connected community structure. Next, we design DFW (detection of fraudulent keywords) that mines the temporal correlations between candidate fraudulent keywords and a given list of seeds. In particular, DFW leverages several refinements to filter out non-fraudulent keywords that co-occur with seeds occasionally. The evaluation using the search logs shows that DFW achieves high fraud detection precision (99%) and accuracy (93%). A further analysis reveals several typical temporal evolution patterns of fraudulent keywords and the co-existence of both bots and crowd workers as fraudsters for web search fraud. |
关键词 | community structure fraud analysis fraudulent keyword detection web search |
DOI | 10.1007/s11390-021-0218-2 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2018YFB1800205] ; National Natural Science Foundation of China[61725206] ; National Natural Science Foundation of China[U20A20180] ; National Natural Science Foundation of China[GJHZ202114] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Hardware & Architecture ; Computer Science, Software Engineering |
WOS记录号 | WOS:000712575700016 |
出版者 | SCIENCE PRESS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/16934 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Li, Zhen-Yu |
作者单位 | 1.Chinese Acad Sci, Network Technol Res Ctr, Inst Comp Technol, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Global Energy Interconnect Res Inst Co Ltd, Beijing 102209, Peoples R China 4.Univ Savoie Mt Blanc, LISTIC Lab Comp Sci Syst Informat & Knowledge Pro, F-73011 Chambery, France 5.Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Dong-Hui,Li, Zhen-Yu,Wang, Xiao-Hui,et al. Exploiting the Community Structure of Fraudulent Keywords for Fraud Detection in Web Search[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2021,36(5):1167-1183. |
APA | Yang, Dong-Hui,Li, Zhen-Yu,Wang, Xiao-Hui,Salamatian, Kave,&Xie, Gao-Gang.(2021).Exploiting the Community Structure of Fraudulent Keywords for Fraud Detection in Web Search.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,36(5),1167-1183. |
MLA | Yang, Dong-Hui,et al."Exploiting the Community Structure of Fraudulent Keywords for Fraud Detection in Web Search".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 36.5(2021):1167-1183. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论