CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Roulette: A Pruning Framework to Train a Sparse Neural Network From Scratch
Zhong, Qiaoling1; Zhang, Zhibin; Qiu, Qiang; Cheng, Xueqi
2021
发表期刊IEEE ACCESS
ISSN2169-3536
卷号9页码:51134-51145
摘要Due to space and inference time restrictions, finding an efficient and sparse sub-network from a dense and over-parameterized network is critical for deploying neural networks on edge devices. Recent efforts explore obtaining a sparse sub-network by performing network pruning during training procedures to reduce training costs, such as memory and fioating-point operations (FLOPs). However, these works take more than 1.4 x the total number of iterations and try all possible pruning parameters manually to obtain sparse sub-networks. In this paper, we present a pruning framework Roulette to train a sparse network from scratch. First, we propose a novel method to train a sparse network by Pruning through the lens of Loss Landscape iteratively and automatically (PLL). We do a theoretical analysis that the curvature of the loss function is higher in the initial phase and can conduct us to start network pruning. According to our results on CIFAR-10/100 and ImageNet dataset, PLL saves up to 4x training FLOPs than prior works while maintaining comparable or even better accuracy. Then we design push and pull operations to synchronize the pruned weights on different GPUs during training, scaling PLL to multiple GPUs linearly. To our knowledge, Roulette is the first network pruning framework supporting multiple GPUs linearly.
关键词Network pruning inference acceleration model compression multiple GPUs
DOI10.1109/ACCESS.2021.3065406
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of Chinese Academy of Sciences (CAS)[XDA19020400]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000638386800001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16768
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhong, Qiaoling
作者单位1.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhong, Qiaoling,Zhang, Zhibin,Qiu, Qiang,et al. Roulette: A Pruning Framework to Train a Sparse Neural Network From Scratch[J]. IEEE ACCESS,2021,9:51134-51145.
APA Zhong, Qiaoling,Zhang, Zhibin,Qiu, Qiang,&Cheng, Xueqi.(2021).Roulette: A Pruning Framework to Train a Sparse Neural Network From Scratch.IEEE ACCESS,9,51134-51145.
MLA Zhong, Qiaoling,et al."Roulette: A Pruning Framework to Train a Sparse Neural Network From Scratch".IEEE ACCESS 9(2021):51134-51145.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhong, Qiaoling]的文章
[Zhang, Zhibin]的文章
[Qiu, Qiang]的文章
百度学术
百度学术中相似的文章
[Zhong, Qiaoling]的文章
[Zhang, Zhibin]的文章
[Qiu, Qiang]的文章
必应学术
必应学术中相似的文章
[Zhong, Qiaoling]的文章
[Zhang, Zhibin]的文章
[Qiu, Qiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。