CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
CompSNN: A lightweight spiking neural network based on spatiotemporally compressive spike features
Wang, Tengxiao1; Shi, Cong1; Zhou, Xichuan1; Lin, Yingcheng1; He, Junxian1; Gan, Ping1; Li, Ping1; Wang, Ying2; Liu, Liyuan3; Wu, Nanjian3; Luo, Gang4
2021-02-15
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号425页码:96-106
摘要Brain-inspired spiking neural networks (SNNs) have become a research hotspot in recent years. These SNNs communicate and process information in a form of spatiotemporally sparse spikes, leading to high energy efficiency and low computational cost for object classification tasks. However, to reduce computational complexity while maintaining SNN classification accuracy still remains a challenge. Extracting representative and robust feature is the key. This paper proposes efficient spatiotemporally compressive spike features and presents a lightweight SNN framework that includes a feature extraction layer to extract such compressive features. Our experiments based on popular benchmark datasets demonstrated that the spatiotemporally compressive spike features are competent and robust in representing the input spike trains. The experimental results also suggest that our lightweight SNN framework with such compressive spike feature requires a small amount of processing time consumption while achieving comparable classification rate across many popular datasets: MNIST, MNIST-DVS, Poker-DVS, Posture-DVS and more challenging Fashion-MNIST datasets. The SNN framework has a potential to be applied in low-cost or resource-limited edge computing systems and embedded devices. ? 2020 Elsevier B.V. All rights reserved.
关键词Neuromorphic computing Spiking neural networks SNN Compressive sensing Object classification Multi-spike encoding
DOI10.1016/j.neucom.2020.10.100
收录类别SCI
语种英语
资助项目Key Project of Chongqing Science and Technology Foundation[cstc2019jcyjzdxmX0017] ; State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences[CARCH201908] ; Fundamental Research Funds for the Central Universities[2019CDXYTX0024]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000632015900008
出版者ELSEVIER
引用统计
被引频次:17[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16764
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shi, Cong
作者单位1.Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
4.Harvard Med Sch, Schepens Eye Res Inst, Dept Ophthalmol, Massachusetts Eye & Ear, Boston, MA 02114 USA
推荐引用方式
GB/T 7714
Wang, Tengxiao,Shi, Cong,Zhou, Xichuan,et al. CompSNN: A lightweight spiking neural network based on spatiotemporally compressive spike features[J]. NEUROCOMPUTING,2021,425:96-106.
APA Wang, Tengxiao.,Shi, Cong.,Zhou, Xichuan.,Lin, Yingcheng.,He, Junxian.,...&Luo, Gang.(2021).CompSNN: A lightweight spiking neural network based on spatiotemporally compressive spike features.NEUROCOMPUTING,425,96-106.
MLA Wang, Tengxiao,et al."CompSNN: A lightweight spiking neural network based on spatiotemporally compressive spike features".NEUROCOMPUTING 425(2021):96-106.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Tengxiao]的文章
[Shi, Cong]的文章
[Zhou, Xichuan]的文章
百度学术
百度学术中相似的文章
[Wang, Tengxiao]的文章
[Shi, Cong]的文章
[Zhou, Xichuan]的文章
必应学术
必应学术中相似的文章
[Wang, Tengxiao]的文章
[Shi, Cong]的文章
[Zhou, Xichuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。