CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
What is a Tabby? Interpretable Model Decisions by Learning Attribute-Based Classification Criteria
Liu, Haomiao1; Wang, Ruiping2; Shan, Shiguang2; Chen, Xilin2
2021-05-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号43期号:5页码:1791-1807
摘要State-of-the-art classification models are usually considered as black boxes since their decision processes are implicit to humans. On the contrary, human experts classify objects according to a set of explicit hierarchical criteria. For example, "tabby is a domestic cat with stripes, dots, or lines", where tabby is defined by combining its superordinate category (domestic cat) and some certain attributes (e.g., has stripes). Inspired by this mechanism, we propose an interpretable Hierarchical Criteria Network (HCN) by additionally learning such criteria. To achieve this goal, images and semantic entities (e.g., taxonomies and attributes) are embedded into a common space, where each category can be represented by the linear combination of its superordinate category and a set of learned discriminative attributes. Specifically, a two-stream convolutional neural network (CNN) is elaborately devised, which embeds images and taxonomies with the two streams respectively. The model is trained by minimizing the prediction error of hierarchy labels on both streams. Extensive experiments on two widely studied datasets (CIFAR-100 and ILSVRC) demonstrate that HCN can learn meaningful attributes as well as reasonable and interpretable classification criteria. Therefore, the proposed method enables further human feedback for model correction as an additional benefit.
关键词Cats Prototypes Visualization Task analysis Streaming media Predictive models Scalability Interpretable model visual attributes convolutional neural network classification criteria
DOI10.1109/TPAMI.2019.2954501
收录类别SCI
语种英语
资助项目973 Program[2015CB351802] ; Natural Science Foundation of China[61390511] ; Natural Science Foundation of China[61772500] ; Frontier Science Key Research Project CAS[QYZDJ-SSW-JSC009] ; Youth Innovation Promotion Association CAS[2015085]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000637533800022
出版者IEEE COMPUTER SOC
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16658
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chen, Xilin
作者单位1.Huawei EI Innovat Lab, Beijing 100085, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, CAS, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liu, Haomiao,Wang, Ruiping,Shan, Shiguang,et al. What is a Tabby? Interpretable Model Decisions by Learning Attribute-Based Classification Criteria[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2021,43(5):1791-1807.
APA Liu, Haomiao,Wang, Ruiping,Shan, Shiguang,&Chen, Xilin.(2021).What is a Tabby? Interpretable Model Decisions by Learning Attribute-Based Classification Criteria.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,43(5),1791-1807.
MLA Liu, Haomiao,et al."What is a Tabby? Interpretable Model Decisions by Learning Attribute-Based Classification Criteria".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 43.5(2021):1791-1807.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Haomiao]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
百度学术
百度学术中相似的文章
[Liu, Haomiao]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
必应学术
必应学术中相似的文章
[Liu, Haomiao]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。