Institute of Computing Technology, Chinese Academy IR
Geometric moment invariants to spatial transform and N-fold symmetric blur | |
Mo, Hanlin1,2; Hao, Hongxiang1,2; Li, Hua1,2 | |
2021-07-01 | |
发表期刊 | PATTERN RECOGNITION |
ISSN | 0031-3203 |
卷号 | 115页码:14 |
摘要 | In this paper, we focus on the derivation of blur moment invariants. Blur moment invariants are im-age moment-based features, which preserve their values when the image is convolved by a point-spread function (PSF). Suppose a PSF has N-fold rotational symmetry, we prove its geometric moments of the same order are linearly dependent. Depending on this property, a new approach is proposed to deter-mine whether an existing similarity or affine moment invariant also has invariance to N-fold symmetric blur. Unlike earlier work, this method is not based on complicated operators and construction formu-las. We use it to analyse classical moment-based features, and surprisingly find that five of Hu moment invariants are naturally invariant to N-fold symmetric blur. Meanwhile, we first prove the existence of moment invariants to both affine transform and N-fold symmetric blur. The experiments using synthetic and real blur image datasets are carried out to test these expectations. And the results show that five Hu moment invariants outperform some widely used blur moment invariants and non-moment image features in image retrieval, classification and template matching. (c) 2021 Elsevier Ltd. All rights reserved. |
关键词 | Blurred image Blur invariants Moment invariants Spatial transform N-fold symmetry Object recognition Template matching |
DOI | 10.1016/j.patcog.2021.107887 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2017YFB1002703] ; National Key Basic Research Planning Project of China[2015CB554507] ; National Natural Science Foundation of China[61227802] ; National Natural Science Foundation of China[61379082] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000639745600008 |
出版者 | ELSEVIER SCI LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/16655 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Mo, Hanlin |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China 2.Univ Chinese Acad Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Mo, Hanlin,Hao, Hongxiang,Li, Hua. Geometric moment invariants to spatial transform and N-fold symmetric blur[J]. PATTERN RECOGNITION,2021,115:14. |
APA | Mo, Hanlin,Hao, Hongxiang,&Li, Hua.(2021).Geometric moment invariants to spatial transform and N-fold symmetric blur.PATTERN RECOGNITION,115,14. |
MLA | Mo, Hanlin,et al."Geometric moment invariants to spatial transform and N-fold symmetric blur".PATTERN RECOGNITION 115(2021):14. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论