Institute of Computing Technology, Chinese Academy IR
On semi-supervised multiple representation behavior learning | |
Lu, Ruqian1,2; Hou, Shengluan2,3 | |
2020-10-01 | |
发表期刊 | JOURNAL OF COMPUTATIONAL SCIENCE |
ISSN | 1877-7503 |
卷号 | 46页码:17 |
摘要 | Since Shahshahani and Landgrebe published their seminal paper (Shahshahani and Landgrebe, 1994) [1] in 1994, the study on semi-supervised learning (SSL) developed fast and has already become one of the main streams of machine learning (ML) research. However, there are still some areas or problems where the capability of SSL remains seriously limited. Firstly, according to our observation, almost all SSL researches are towards classification, regression or clustering tasks. More difficult tasks such as planning, construction, summarization, argumentation, etc. are rarely seen studied with SSL methods. Secondly, most SSL researches use only simple labels (e.g. a string, an identifier, a numerical value, etc.) to mark the text data. It is difficult to use such simple labels to characterize data with delicate information. This limitation might be the reason why current SSL technique is not appropriate in processing complex tasks. Thirdly, after entering the age of big data and big knowledge, SSL, like the other branches of ML, is now facing the challenge of learning big knowledge from big data. The shortage of traditional SSL as mentioned above became even more serious and we are looking forward to new technology of SSL. In this paper, we propose and discuss a novel paradigm of SSL: the semi-supervised multiple representation behavior learning (SSMRBL). It is towards matching the challenge to SSL stated above. SSMRBL should extend current SSL techniques to support complex task learning such as planning, construction, summarization, argumentation etc. In order to meet the challenge, SSMRBL introduces compound structured labels such as trees, graphs, lattices, etc. to represent complicated information of objects and tasks to be learned. Thus, to label an unlabeled datum is to construct a compound structured label for it. As a consequence, SSMRBL needs to have multiple representations. There may be one representation for compound structured labels, one for the target model which is the unification of all local models (labels), one for representing the process (behavior) of label construction, and one for the efficient computation during the learning process. This paper introduces also a typical circumstance of SSMRBL-semi-supervised grammar learning (SSGL), which learns a grammar from a set of natural language texts and then applies this grammar to parse new texts and to summarize its content. We provide also experimental results based on a variety of algorithms to show the reasonability of our ideas. (c) 2020 Published by Elsevier B.V. |
关键词 | Semi-supervised learning Semi-supervised multiple representation behavior learning Semi-supervised grammar learning |
DOI | 10.1016/j.jocs.2020.101111 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2016YFB1000902] ; National Natural Science Foundation of China[61232015] ; National Natural Science Foundation of China[61472412] ; National Natural Science Foundation of China[61621003] ; Beijing Science and Technology Project: Machine Learning based Stomatology and Tsinghua-Tencent-AMSS Joint Project: WWW Knowledge Structure and its Application |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods |
WOS记录号 | WOS:000594528700001 |
出版者 | ELSEVIER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/16592 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Lu, Ruqian |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Key Lab MADIS, Beijing 100190, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Lu, Ruqian,Hou, Shengluan. On semi-supervised multiple representation behavior learning[J]. JOURNAL OF COMPUTATIONAL SCIENCE,2020,46:17. |
APA | Lu, Ruqian,&Hou, Shengluan.(2020).On semi-supervised multiple representation behavior learning.JOURNAL OF COMPUTATIONAL SCIENCE,46,17. |
MLA | Lu, Ruqian,et al."On semi-supervised multiple representation behavior learning".JOURNAL OF COMPUTATIONAL SCIENCE 46(2020):17. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Lu, Ruqian]的文章 |
[Hou, Shengluan]的文章 |
百度学术 |
百度学术中相似的文章 |
[Lu, Ruqian]的文章 |
[Hou, Shengluan]的文章 |
必应学术 |
必应学术中相似的文章 |
[Lu, Ruqian]的文章 |
[Hou, Shengluan]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论