CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
CGNet: A Light-Weight Context Guided Network for Semantic Segmentation
Wu, Tianyi1,2; Tang, Sheng1,2; Zhang, Rui1,2; Cao, Juan1,2; Zhang, Yongdong1,2
2021
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号30页码:1169-1179
摘要The demand of applying semantic segmentation model on mobile devices has been increasing rapidly. Current state-of-the-art networks have enormous amount of parameters hence unsuitable for mobile devices, while other small memory footprint models follow the spirit of classification network and ignore the inherent characteristic of semantic segmentation. To tackle this problem, we propose a novel Context Guided Network (CGNet), which is a light-weight and efficient network for semantic segmentation. We first propose the Context Guided (CG) block, which learns the joint feature of both local feature and surrounding context effectively and efficiently, and further improves the joint feature with the global context. Based on the CG block, we develop CGNet which captures contextual information in all stages of the network. CGNet is specially tailored to exploit the inherent property of semantic segmentation and increase the segmentation accuracy. Moreover, CGNet is elaborately designed to reduce the number of parameters and save memory footprint. Under an equivalent number of parameters, the proposed CGNet significantly outperforms existing light-weight segmentation networks. Extensive experiments on Cityscapes and CamVid datasets verify the effectiveness of the proposed approach. Specifically, without any post-processing and multi-scale testing, the proposed CGNet achieves 64.8% mean IoU on Cityscapes with less than 0.5 M parameters.
关键词Semantics Image segmentation Context modeling Computer architecture Computational modeling Mobile handsets Predictive models Semantic segmentation surrounding context global context context guided
DOI10.1109/TIP.2020.3042065
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFC0820605] ; National Natural Science Foundation of China[61525206] ; National Natural Science Foundation of China[U1703261] ; National Natural Science Foundation of China[61871004]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000600835900003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:357[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16584
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tang, Sheng
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Wu, Tianyi,Tang, Sheng,Zhang, Rui,et al. CGNet: A Light-Weight Context Guided Network for Semantic Segmentation[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2021,30:1169-1179.
APA Wu, Tianyi,Tang, Sheng,Zhang, Rui,Cao, Juan,&Zhang, Yongdong.(2021).CGNet: A Light-Weight Context Guided Network for Semantic Segmentation.IEEE TRANSACTIONS ON IMAGE PROCESSING,30,1169-1179.
MLA Wu, Tianyi,et al."CGNet: A Light-Weight Context Guided Network for Semantic Segmentation".IEEE TRANSACTIONS ON IMAGE PROCESSING 30(2021):1169-1179.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Tianyi]的文章
[Tang, Sheng]的文章
[Zhang, Rui]的文章
百度学术
百度学术中相似的文章
[Wu, Tianyi]的文章
[Tang, Sheng]的文章
[Zhang, Rui]的文章
必应学术
必应学术中相似的文章
[Wu, Tianyi]的文章
[Tang, Sheng]的文章
[Zhang, Rui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。