CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Customized Federated Learning for accelerated edge computing with heterogeneous task targets
Jiang, Hui1; Liu, Min1; Yang, Bo1; Liu, Qingxiang1; Li, Jizhong2; Guo, Xiaobing3
2020-12-24
发表期刊COMPUTER NETWORKS
ISSN1389-1286
卷号183页码:13
摘要As a dominant edge intelligence technique, Federated Learning (FL) can reduce the data transmission volume, shorten the communication latency and improve the collaboration efficiency among end-devices and edge servers. Existing works on FL-based edge computing only take device- and resource-heterogeneity into consideration under a fixed loss-minimization objective. As heterogeneous end-devices are usually assigned with various tasks with different target accuracies, task heterogeneity is also a significant issue and has not yet been investigated. To this end, we propose a Customized FL (CuFL) algorithm with an adaptive learning rate to tailor for heterogeneous accuracy requirements and to accelerate the local training process. We also present a fair global aggregation strategy for the edge server to minimize the variance of accuracy gaps among heterogeneous end-devices. We rigorously analyze the convergence property of the CuFL algorithm in theory. We also verify the feasibility and effectiveness of the CuFL algorithm in the vehicle classification task. Evaluation results demonstrate that our algorithm performs better in terms of the accuracy rate, training time, and fairness during aggregation than existing efforts.
关键词Edge computing Federated Learning Convergence performance
DOI10.1016/j.comnet.2020.107569
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61732017] ; National Natural Science Foundation of China[62072436] ; National Natural Science Foundation of China[61872028]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000599651100014
出版者ELSEVIER
引用统计
被引频次:17[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16530
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Min
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing, Peoples R China
2.Huawei Technol Co Ltd, Cent Software Inst, Beijing, Peoples R China
3.Lenovo Res, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Jiang, Hui,Liu, Min,Yang, Bo,et al. Customized Federated Learning for accelerated edge computing with heterogeneous task targets[J]. COMPUTER NETWORKS,2020,183:13.
APA Jiang, Hui,Liu, Min,Yang, Bo,Liu, Qingxiang,Li, Jizhong,&Guo, Xiaobing.(2020).Customized Federated Learning for accelerated edge computing with heterogeneous task targets.COMPUTER NETWORKS,183,13.
MLA Jiang, Hui,et al."Customized Federated Learning for accelerated edge computing with heterogeneous task targets".COMPUTER NETWORKS 183(2020):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jiang, Hui]的文章
[Liu, Min]的文章
[Yang, Bo]的文章
百度学术
百度学术中相似的文章
[Jiang, Hui]的文章
[Liu, Min]的文章
[Yang, Bo]的文章
必应学术
必应学术中相似的文章
[Jiang, Hui]的文章
[Liu, Min]的文章
[Yang, Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。