CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Multiset Feature Learning for Highly Imbalanced Data Classification
Jing, Xiao-Yuan1,2,3; Zhang, Xinyu1; Zhu, Xiaoke4; Wu, Fei3; You, Xinge5; Gao, Yang6; Shan, Shiguang7; Yang, Jing-Yu8
2021
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号43期号:1页码:139-156
摘要With the expansion of data, increasing imbalanced data has emerged. When the imbalance ratio (IR) of data is high, most existing imbalanced learning methods decline seriously in classification performance. In this paper, we systematically investigate the highly imbalanced data classification problem, and propose an uncorrelated cost-sensitive multiset learning (UCML) approach for it. Specifically, UCML first constructs multiple balanced subsets through random partition, and then employs the multiset feature learning (MFL) to learn discriminant features from the constructed multiset. To enhance the usability of each subset and deal with the nonlinearity issue existed in each subset, we further propose a deep metric based UCML (DM-UCML) approach. DM-UCML introduces the generative adversarial network technique into the multiset constructing process, such that each subset can own similar distribution with the original dataset. To cope with the non-linearity issue, DM-UCML integrates deep metric learning with MFL, such that more favorable performance can be achieved. In addition, DM-UCML designs a new discriminant term to enhance the discriminability of learned metrics. Experiments on eight traditional highly class-imbalanced datasets and two large-scale datasets indicate that: the proposed approaches outperform state-of-the-art highly imbalanced learning methods and are more robust to high IR.
关键词Highly imbalanced data classification multiset feature learning deep metric learning generative adversarial network cost-sensitive factor weighted uncorrelated constraint
DOI10.1109/TPAMI.2019.2929166
收录类别SCI
语种英语
资助项目NSFC-Key Project of General Technology Fundamental Research United Fund[U1736211] ; National Natural Science Foundation of China[61672208] ; National Natural Science Foundation of China[61702280] ; National Natural Science Foundation of China[61772220] ; National Natural Science Foundation of China[61432008] ; key research and development program of China[2016YFE0121200] ; Key Science and Technology Innovation Program of Hubei Province[2017AAA017] ; Key Science and Technology Innovation Program of Hubei Province[2018ACA135] ; Natural Science Foundation Key Project for Innovation Group of Hubei Province[2018CFA024] ; Natural Science Foundation of Jiangsu Province[BK20170900] ; National Postdoctoral Program for Innovative Talents[BX20180146] ; Higher Education Institution Key Research Projects of Henan Province[19A520001]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000597206900010
出版者IEEE COMPUTER SOC
引用统计
被引频次:86[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16518
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jing, Xiao-Yuan; Zhu, Xiaoke; Wu, Fei
作者单位1.Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
2.Guangdong Univ Petrochem Technol, Sch Comp, Maoming 525000, Peoples R China
3.Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210003, Peoples R China
4.Henan Univ, Henan Key Lab Big Data Anal & Proc, Kaifeng 475004, Peoples R China
5.Huazhong Univ Sci & Technol, Dept Elect & Informat Engn, Wuhan 430074, Peoples R China
6.Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210094, Peoples R China
7.Chinese Acad Sci, Inst Comp Technol, CAS, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
8.Nanjing Univ Sci & Technol, Coll Comp Sci, Nanjing 210094, Peoples R China
推荐引用方式
GB/T 7714
Jing, Xiao-Yuan,Zhang, Xinyu,Zhu, Xiaoke,et al. Multiset Feature Learning for Highly Imbalanced Data Classification[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2021,43(1):139-156.
APA Jing, Xiao-Yuan.,Zhang, Xinyu.,Zhu, Xiaoke.,Wu, Fei.,You, Xinge.,...&Yang, Jing-Yu.(2021).Multiset Feature Learning for Highly Imbalanced Data Classification.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,43(1),139-156.
MLA Jing, Xiao-Yuan,et al."Multiset Feature Learning for Highly Imbalanced Data Classification".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 43.1(2021):139-156.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jing, Xiao-Yuan]的文章
[Zhang, Xinyu]的文章
[Zhu, Xiaoke]的文章
百度学术
百度学术中相似的文章
[Jing, Xiao-Yuan]的文章
[Zhang, Xinyu]的文章
[Zhu, Xiaoke]的文章
必应学术
必应学术中相似的文章
[Jing, Xiao-Yuan]的文章
[Zhang, Xinyu]的文章
[Zhu, Xiaoke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。